324 pages - mars 2020
ISBN papier : 9781784056605
ISBN ebook : 9781784066604
Ebook
9,90
Papier
90,00
 
Effacer

– Papier :
Livraison offerte pour toute commande directe effectuée sur le site istegroup.com
Délai de livraison : environ une semaine
Envois uniquement vers : France métropolitaine, Belgique, Suisse et Luxembourg
Impression en couleur
Un ebook de l’ouvrage est offert pour toute commande de sa version papier passée directement sur notre site
Il vous sera envoyé après la finalisation de votre commande

– Ebook :
Prix réservé aux particuliers
Pour les institutions : nous contacter 
Nos ebooks sont au format PDF (compatible sur tout support)

Dans de nombreux domaines scientifiques, les tenseurs jouent un rôle central pour la représentation, l’analyse, la classification et la fusion de données massives multidimensionnelles et multimodales.

Cet ouvrage fait un rappel des structures algébriques standards avant d’introduire les espaces de Banach et de Hilbert. Une attention particulière est portée à l’approche hilbertienne pour la représentation de signaux et l’approximation de fonctions, à l’aide de séries de Fourier et de polynômes orthogonaux. Les matrices et hypermatrices associées aux applications linéaires, bilinéaires et multilinéaires sont ensuite plus particulièrement étudiées et des résultats sur les matrices partitionnées sont présentés. Les notions de décomposition, de rang, de valeur propre, de valeur singulière et de dépliement d’un tenseur sont introduites en soulignant les similitudes et les différences entre matrices et tenseurs d’ordre élevé.

Des structures algébriques aux tenseurs a pour objectif d’introduire de façon didactique les outils matriciels et tensoriels.

1. Structures algébriques
2. Espaces de Banach et de Hilbert – Séries de Fourier et polynômes orthogonaux
3. Algèbre matricielle
4. Matrices partitionnées
5. Espaces tensoriels et tenseurs

Gérard Favier

Gérard Favier est directeur de recherche émérite au CNRS et au laboratoire I3S de Sophia Antipolis. Ses recherches concernent les applications en traitement du signal basées sur des approches tensorielles, plus particulièrement pour les systèmes de communication sans fil.


Avant-propos et introduction Table des matières