Cet ouvrage est uniquement disponible en version électronique.
– Papier (Collections classiques, Encyclopédie SCIENCES) :
Livraison offerte pour toute commande directe effectuée sur le site istegroup.com
Délai de livraison : environ deux semaines
Envois uniquement vers : France métropolitaine, Belgique, Suisse et Luxembourg
Impression en couleur
Un ebook de l’ouvrage (à l’exception des titres de l’Encyclopédie SCIENCES) est offert pour tout achat
de sa version papier sur notre site, il vous sera envoyé après la finalisation de votre commande
Offre non applicable aux librairies
– Ebook (Collections classiques, Encyclopédie SCIENCES, Abrégés) :
Prix réservé aux particuliers
Pour les institutions : nous contacter
Nos ebooks sont au format PDF (compatible sur tout support)
Poincaré Lemma on Differential Forms and Connections with Čech-De Rham-Dolbeault Cohomologies deals with the connections between Čech-De Rham-Dolbeault cohomologies and the Dolbeault- Grothendieck lemma. It begins by discussing one-parameter groups of diffeomorphisms or flow, Lie derivative and interior products, as well as Cartan’s formula and the Poincaré lemma on differential forms.
Throughout the book, we study sheaves, Čech cohomology and De Rham cohomology, and present some of their most basic properties. We also explore the Mayer-Vietoris sequence by demonstrating its use when calculating the cohomology group of the sphere. We introduce the Künneth formula (and as an application) and compute the cohomology of the torus.
The final sections of the book study the delta bar-Poincaré lemma – as well as the Dolbeault-Grothendieck lemma and its consequences – while also proving the delta bar-Poincaré lemma in one variable, the Grothendieck Poincaré lemma, and the Dolbeault’s theorem when establishing the isomorphism between Dolbeault and Čech cohomology. Some results related to the connections, curvature and first Chern class of line bundles are also given. The text is enriched by concrete examples, along with exercises and their solutions.
1. Flows, Lie Derivative, Inner Product and Cartan Formula
2. Poincaré Lemma or Volterra Theorem
3. Some Generalities on Sheaf Cohomology
4. Čech–De Rham–Dolbeault Cohomologies and Poincaré Lemma