
 

Avant-propos 

Cet ouvrage est destiné, principalement, à de jeunes chercheurs qui manient 
des caméras thermiques en laboratoire ou en extérieur, pour observer le com-
portement d’une machine, d’un processus industriel ou d’un ouvrage du génie 
civil, et qui, devant les difficultés considérables d’interprétation des thermogra-
phies, souhaitent simuler de telles images sur l’ordinateur. Ils sont naturellement 
amenés à la méthode des éléments finis, mais ils découvrent que les codes exis-
tants sont mal adaptés à ce type de problèmes et qu’il est nécessaire de dévelop-
per, à la fois dans le prétraitement, dans le calcul lui-même et dans le post-
traitement, des procédures pour lesquelles il n’existe aucun guide, ni aucun 
ouvrage de référence vraiment pertinent. 

Dans cet avant-propos, toutefois, nous aimerions nous adresser d’abord aux 
collègues expérimentés, principalement issus de la communauté des éléments 
finis, susceptibles d’encadrer de tels travaux, ou d’en enseigner la théorie, les-
quels se sentiront peut-être un peu déconcertés devant la variété des sources 
scientifiques à mobiliser pour traiter correctement un problème d’apparence 
aussi simple. Simple, en effet, car il s’agit essentiellement de coupler deux équa-
tions bien connues : d’une part, celle de la diffusion de la chaleur dans les so-
lides, une équation aux dérivées partielles, elliptique en régime permanent, 
parabolique en régime transitoire, et, d’autre part, pour les réflexions du rayon-
nement entre les surfaces de la scène, l’équation intégrale qui porte indifférem-
ment le nom de l’un des deux mathématiciens qui l’ont décrite simultanément 
au début du XXe siècle, Ivar Fredholm (1866-1927) et Vito Volterra (1860-
1940). Or, cette dernière se prête très bien à la méthode de Monte-Carlo. Il faut 
lancer une quantité vertigineuse de rayons depuis toutes les surfaces de la scène 
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pour avoir une solution précise, mais cela n’est plus vraiment un problème au-
jourd’hui, grâce aux progrès de l’informatique.  

On imagine donc les chercheurs construire la géométrie à simuler, la mailler 
par un processus automatique, probablement de manière non structurée, avec 
des tétraèdres dont il faut ensuite extraire la peau, elle-même constituée d’un 
grand nombre de triangles, éventuellement soumis aux réflexions d’un rayonne-
ment en ondes courtes, par exemple depuis le Soleil (premier lancer de rayons, 
indépendant du calcul éléments finis), puis émettant des ondes longues en 
fonction de la quatrième puissance de leur température, lesquelles se réfléchis-
sent à leur tour (deuxième lancer de rayons, intégré cette fois au schéma des 
différences finies). Une fois terminé le calcul, un troisième lancer de rayons, 
réalisé en posttraitement depuis la position de la caméra, permet enfin de for-
mer l’image recherchée. Outre de nombreuses difficultés techniques, cette ma-
nière de procéder entraîne cependant une insatisfaction d’ordre théorique. 

L’idéalisation de la nature qui sert de cadre aux images (monde visible), à 
l’équation de Fourier (gradients thermiques) et à la méthode des éléments finis 
est celle des milieux continus. Elle correspond à l’échelle où vivent les êtres 
humains et où ils développent leurs artefacts, depuis les plus petits, qui tiennent 
dans la paume de la main, jusqu’aux plus grands ouvrages de l’architecture et 
du génie civil. Afin de suivre fidèlement la forme d’un objet, l’élément fini a 
une taille qui varie, typiquement, du dixième de millimètre à la centaine de mè-
tres. De part et d’autre de cette échelle, la géométrie, au sens des Grecs, se perd 
dans des descriptions statistiques, puis discrètes. Ici, nous ramenons de la mé-
canique quantique l’idéalisation de la continuité du corps noir, tandis que, de-
puis les orbites képlériennes, nous rapportons les trajets apparents du Soleil dans 
le ciel continu de notre scène. 

Dans les milieux continus, le calcul des variations permet de résoudre glo-
balement une équation aux dérivées partielles, à partir d’une fonctionnelle qu’il 
s’agit, en général, de minimiser. Par rapport à la formulation des éléments finis 
selon Galerkin, qui revient à discrétiser non seulement la géométrie, mais aussi 
l’équation, le calcul des variations ne discrétise que la fonctionnelle. C’est pour-
quoi nous utilisons systématiquement ce dernier, en introduisant successive-
ment dans la fonctionnelle du champ des températures la diffusion en régime 
permanent, les conditions aux limites de Neumann et la convection, mais aussi,  
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ce qui est moins fréquent dans la littérature, le régime transitoire et le rayonne-
ment. Par rapport à la clarté de cet exposé, la résolution par Monte-Carlo de 
l’équation de Voltera paraît d’autant plus obscure : chaque rayon lancé ignore 
tout de ses voisins, nous ne sommes plus dans les milieux continus. 

Dans la seconde moitié du XXe siècle, la communauté nouvelle de l’infogra-
phie et du rendu réaliste s’est emparée de cette équation, qu’elle a rebaptisée 
« équation d’illumination globale ». Deux hypothèses principales – la réflexion 
est lambertienne et la scène est discrétisée en carreaux – permettent de la ré-
duire à un simple système linéaire, où toute la géométrie est concentrée dans les 
« facteurs de vue ». Pour le reste, la méthode de radiosité ressemble tellement 
à celle des éléments finis que certains auteurs n’hésitent pas à l’y rapporter. De 
fait, elle a été incluse très naturellement dans les principaux codes éléments 
finis, mais sous sa forme classique, avec l’hypothèse restrictive de la réflexion 
parfaitement diffuse. 

Lorsque les scènes étudiées deviennent complexes, il est cependant néces-
saire de réintroduire les techniques de lancer de rayons, mais seulement dans 
l’évaluation des facteurs de vue, pour détecter précisément les objets qui s’in-
terposent entre deux carreaux (élimination des parties cachées). Rien n’empê-
che alors de prolonger par une réflexion spéculaire un rayon qui rencontrerait 
une surface polie, de manière à étendre le facteur de vue à « l’autre côté du 
miroir ». En fait, les facteurs de vue étendus permettent de prendre en compte 
tous les types de réflexion possible ou de transmission au travers des objets 
translucides. Il est remarquable que la discrétisation ne s’opère plus que sur la 
géométrie : discrétisation des surfaces de la scène en carreaux, lesquels forment 
la peau du maillage éléments finis, puis discrétisation des facteurs de vue en 
rayons, sans perte de généralité dans la description des propriétés optiques. Il y 
a donc une grande affinité entre le calcul des variations et la méthode de radio-
sité étendue : les équations et la physique qu’elles décrivent demeurent intactes 
dans l’idéalisation des milieux continus. 

Dans le dernier tiers du XXe siècle, une autre simplification est venue, cette 
fois, de la communauté de la conception assistée par ordinateur. Comme nous 
le rappelons ici, cette idée a tardé quelques années avant d’être reprise par la 
communauté émergente des éléments finis, sous le nom d’éléments isopara-
métriques : les mêmes fonctions de forme décrivent la géométrie et le champ 
physique étudié. Nous montrons dans cet ouvrage les avantages du maillage 
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structuré résultant, en particulier pour le couplage conductif-radiatif. En partant 
de nos travaux précédents, nous proposons une partition de la sphère ou de 
l’hémisphère qui permette de stratifier le lancer de rayons de manière idéale, soit 
à angles solides égaux, soit à facteurs de vue égaux. Lorsque l’on tire depuis la 
peau des éléments isoparamétriques, on bénéficie encore des propriétés du 
maillage structuré, et donc indicé, pour le repérage des éléments. Le maillage 
structuré permet en outre de respecter parfaitement les symétries de la géomé-
trie étudiée. Si les conditions aux limites imposées sont également symétriques, 
alors on peut retrouver ces symétries dans la solution, ce qui constitue un avan-
tage essentiel pour la compréhension, l’interprétation et la vérification des simu-
lations. 

Dans le chapitre 8, nous empruntons à une communauté très particulière, 
qui travaille sur le confort dans les bâtiments, la notion de température moyen-
ne radiante, soit la température que mesurerait un thermomètre placé dans un 
globe peint en noir. Cette température est définie en tout point de l’espace, 
même au sein du vide ou d’un milieu parfaitement transparent. Elle illustre 
donc bien l’intégration du rayonnement aux milieux continus, et devrait trouver 
sa place dans la physique du rayonnement, au-delà du champ restreint où elle a 
été proposée. 

Cet ouvrage s’arrête donc avant l’introduction de la dynamique des fluides 
et d’autres phénomènes complexes, comme les changements de phase. Cepen-
dant, il faut noter que de tels problèmes, certes très ardus à mettre en œuvre dans 
la simulation, ne posent aucune difficulté particulière quant à leur participation 
aux milieux continus. Cette difficulté n’existait que pour le rayonnement. Nous 
l’avons clarifiée ici, et nous pensons que notre démarche constitue le meilleur 
point de départ possible pour toute application multiphysique future conçue à 
partir de la thermique des milieux continus. 

Un dernier commentaire concerne les simulations multi-échelles, devenues 
habituelles dans d’autres domaines de la mécanique, l’élasticité par exemple, 
mais encore peu définies dans le champ de la thermique. L’échelle que nous 
décrivons ici est centrée sur une maille de dix centimètres de côté, à un facteur 
dix près. À l’échelle inférieure, centrée sur le millimètre, il devient inconceva-
ble de mailler une scène entière. C’est la première échelle des matériaux, par 
exemple de l’épaisseur d’un vitrage que l’on souhaite doter de certaines proprié-
tés thermiques et optiques. À notre échelle, il est habituel de recevoir de telles 
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propriétés, pour paramétrer les simulations, par exemple, d’un grand bâtiment 
utilisant ces vitrages. Nous devrions retourner les résultats de nos simulations 
comme conditions aux limites pour les études propres aux matériaux, mais 
cela ne se fait pas encore. Il n’y a donc pas de dialogue avec l’échelle infé-
rieure, pas plus qu’avec l’échelle immédiatement supérieure. Celle-ci, centrée 
sur le décamètre, fait encore partie des milieux continus, mais la géométrie y 
est nécessairement simplifiée. Elle est probablement indispensable pour cer-
taines simulations de dynamique des fluides encore inenvisageables sur de 
grands modèles (par exemple, la ville entière où se trouve le bâtiment) qui se-
raient trop détaillés. Cette échelle devrait à son tour dialoguer avec les deux 
échelles supérieures, bien identifiées sous le nom d’échelle méso (maille d’un 
kilomètre de côté, c’est l’échelle, entre autres, des météorologues) et d’échelle 
macro (cent kilomètres de côté, utilisée par les climatologues pour des simula-
tions globales de notre planète). 

Les milieux continus sont vastes, leur description comprend trois échelles 
spatiales séparées l’une de l’autre par un facteur cent : celles du millimètre, du 
décimètre et du décamètre. Si l’on part de l’échelle centrale – par exemple pour 
l’étude des échanges thermiques dans une rue – il faut dialoguer avec les deux 
échelles situées de part et d’autre – dans notre exemple : celle des revêtements 
et celle de la ville entière – toutes deux appartenant encore aux milieux con-
tinus. Tout ce qui est expliqué dans cet ouvrage s’applique donc encore. Le 
même programme peut servir aux trois échelles, à condition de pouvoir zoomer 
et dézoomer dans le modèle géométrique, ce qui peut être réalisé par des tech-
niques de maillage adaptatif. En revanche, et tant qu’un tel processus ne sera 
pas maîtrisé, il serait prématuré de forcer le dialogue avec les météorologues et 
les physiciens des matériaux : nous avons seulement commencé de défricher le 
chemin, et, avec cet ouvrage, nous posons un premier, mais indispensable, jalon. 



 



 

Introduction 

Dans le monde physique, la chaleur se transmet selon deux modes très dif-
férents : de proche en proche, au sein de ce qu’il est convenu d’appeler les 
milieux continus, et par rayonnement, dans les milieux transparents. Dans le 
premier mode, des particules s’agitent au sein d’un solide (conduction) ou se 
déplacent au sein d’un fluide (convection). Dans le second, la chaleur est trans-
portée par des photons, qui traversent le vide sur des distances immenses, à la 
vitesse de la lumière, puis, éventuellement, pénètrent l’atmosphère terrestre et 
d’autres milieux semi-transparents, tels que l’eau ou le verre, avec des interac-
tions plus ou moins importantes qui se manifestent sous la forme d’absorption 
et de diffusion (le ciel bleu, les nuages, l’océan, les vitrages). 

Cet ouvrage se divise donc en deux parties. La première est centrée sur 
l’équation de diffusion de la chaleur, et la seconde sur celle de la radiosité. Pour 
résoudre la première, la méthode reine est celle des éléments finis, alors que, 
pour la seconde, c’est le lancer de rayons. Ces deux méthodes ont rarement été 
traitées ensemble. L’intérêt principal de cet ouvrage est de présenter le calcul du 
couplage entre la conduction et le rayonnement pour des géométries comple-
xes, avec toute la généralité nécessaire quant à la description des propriétés ther-
miques des matériaux, ainsi que des propriétés optiques des surfaces qui les 
enserrent. 

Le chapitre 1 décrit la méthode des éléments finis, en suivant pas à pas les 
cinq étapes historiques qui l’ont construite en l’espace de deux siècles. On rap-
pelle d’abord l’équation aux dérivées partielles de la diffusion proposée par  
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Joseph Fourier au début du XIXe siècle, puis la fonctionnelle en régime perma-
nent, qu’il s’agit de minimiser, selon les techniques du calcul des variations dé-
veloppées par Leonhard Euler et Joseph-Louis Lagrange à la fin du siècle pré-
cédent. Il faut ensuite attendre un siècle avant que Walther Ritz ne propose, en 
1908, les fonctions d’essais qui ont permis un progrès substantiel dans la réso-
lution du problème. Au milieu du XXe siècle, le développement des ordinateurs 
rend possible de découper la géométrie étudiée en un grand nombre d’éléments 
de taille finie, et d’appliquer à chacun d’eux une procédure dite de Rayleigh-
Ritz. Au milieu des années 1960, Bruce Irons, reprenant les idées développées 
par Steven Anson Coons dans le domaine de la conception assistée par ordina-
teur, a défini les éléments isoparamétriques, lesquels donnent à la méthode des 
éléments finis sa formulation la plus élégante, dans le cadre du maillage struc-
turé. 

Dans le chapitre 2, les conditions aux limites sont abordées à partir des mul-
tiplicateurs de Lagrange, qui donnent une forme très pratique aux conditions 
de Dirichlet, et qui permettent également de coller entre eux des maillages struc-
turés non coïncidents. Les conditions de Neumann sont ensuite abordées, ainsi 
que la convection, à partir de nœuds virtuels mis en rapport avec les carreaux 
de Coons, lesquels sont les surfaces limitant les éléments isoparamétriques qui 
constituent le solide étudié. Dans ces différents aspects, on profite des proprié-
tés particulières du maillage structuré, lequel nous accompagnera jusqu’à la fin 
de l’ouvrage. Les mêmes problèmes peuvent être étudiés avec le maillage non 
structuré par excellence, qui est celui que composent les tétraèdres et triangles 
de Delaunay. Cependant, les différences sont tellement nombreuses qu’il fau-
drait entreprendre un second ouvrage, pour arriver aux mêmes résultats, mais 
avec des difficultés considérables, y compris dans l’expression du couplage 
entre la conduction et le rayonnement. Le fil rouge de notre raisonnement est 
donné par les éléments isoparamétriques, auxquels nous souhaitons rendre tout 
leur attrait, lequel apparaît particulièrement dans le domaine de la thermique. 

Le chapitre 3 propose une extension du principe variationnel au régime tran-
sitoire, ainsi qu’un schéma de différences finies pour aborder l’aspect tem-
porel. La capacité thermique est introduite, et l’on voit que l’inertie thermique 
produit des retards considérables dans la diffusion de la chaleur au travers des 
solides. C’est donc la conduction qui gouverne généralement les problèmes de 
thermique.  
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Les éléments isoparamétriques sont détaillés dans le chapitre 4. Leur nom 
dérive du fait que les fonctions de forme sont les mêmes pour la description de 
la géométrie et pour celle du champ physique étudié. Ils permettent de repro-
duire des géométries complexes, en préservant leurs symétries, avec un repéra-
ge aisé des nœuds et des éléments.  

La seconde partie de l’ouvrage commence au chapitre 5, avec la description 
de la densité spectrale du rayonnement électromagnétique émis par un corps 
noir idéal (loi de Planck), en montrant la séparation entre ondes courtes (émises 
par le Soleil) et ondes longues (émises par la Terre). L’accent est mis sur la 
description spatiale du rayonnement, qui fait appel à deux notions géométri-
ques fondamentales : l’angle solide et le facteur de vue. Nous montrons finale-
ment comment calculer de manière efficace le facteur de vue entre deux car-
reaux de Coons. 

Les ondes courtes font l’objet du chapitre 6. Nous rappelons rapidement les 
trajets apparents du Soleil dans le ciel et l’atténuation de son rayonnement par 
l’atmosphère. Les réflexions des ondes courtes sur les surfaces d’une scène 
terrestre sont étudiées en toute généralité, que la réflexion soit parfaitement dif-
fuse (formulation classique des équations de radiosité) ou plus complexe (intro-
duction des facteurs de vue étendus pour prendre en compte, par exemple, des 
miroirs). Comme le rayonnement en ondes courtes est parfaitement découplé 
de celui des objets de la scène (qui n’émettent que des ondes longues), l’irra-
diance résultante sur les carreaux de Coons se ramène à une simple charge. 

Il n’en va pas de même avec les ondes longues, traitées dans le chapitre 7. 
Cette fois, toutes les surfaces de la scène émettent, en fonction de leur tempéra-
ture (loi de Stefan Boltzmann), qui est donnée par le calcul des éléments finis. 
En régime transitoire, il est donc nécessaire d’intégrer ce calcul au schéma de 
différences finies. À la fin de ce chapitre, il est devenu possible d’obtenir des 
vues en perspective de la scène, où chaque surface est coloriée en fonction de 
sa température, c’est-à-dire : une version numérique de la thermographie. 

Dans le huitième et dernier chapitre, on se propose de créer une thermogra-
phie panoramique de la scène, au moyen d’une double projection. La scène est 
d’abord projetée sur une sphère unitaire entourant le point de vue. Cette pro-
jection centrale est ensuite ramenée sur le plan, en suivant la technique proposée 
en 1805 par Karl Brandan Mollweide. La projection de Mollweide est équiva-
lente, c’est-à-dire qu’elle conserve les rapports de surface, et donc les angles 
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solides, lesquels sont, par définition, les aires projetées sur la sphère unitaire et 
mesurées en stéradians. Cela veut dire que les radiances partant des surfaces de 
la scène en direction du point de vue peuvent être directement additionnées sur 
les pixels de la projection de Mollweide, de manière à obtenir la température 
moyenne radiante. Celle-ci, moyennée avec la température de l’air, donne la 
température opérative, laquelle donne finalement une bonne indication de ce que 
ressentirait une personne se trouvant en ce lieu, en l’absence de vent. 

Cet ouvrage propose une étude du couplage entre la conduction et le rayon-
nement, lequel intéresse de nombreuses applications. La séparation entre ondes 
courtes et ondes longues n’est pas toujours pertinente, elle ne concerne que des 
scènes situées sur notre planète et soumises au rayonnement solaire (Beckers 
2016). Parmi ces scènes, les plus stimulantes sont les villes, et les bâtiments qui 
les forment, lesquels, du fait de leurs formes régulières, trouvent dans les élé-
ments isoparamétriques leur maillage naturel. Cet ouvrage est donc particuliè-
rement destiné aux simulations de la physique urbaine. 




