Table des matières

chapitre 1. Methodes non lineaires pour le diagnostic des défauts	1
Silvio Simani et Paolo Castaldi	1
1.1. Introduction	1
1.2. Tâches de diagnostic des défauts	2
1.2.1. Tâche de génération résiduelle	6
1.2.2. Tâche d'évaluation résiduelle	8
1.3. Diagnostic de défauts basé sur les modèles	9
1.3.1. Relations d'espace de parité	10
1.3.2. Approches basées sur observateur	12
1.3.3. Méthodes de filtrage non linéaire	15
1.3.4. Stratégie d'approche non linéaire	18
1.4. Diagnostic de défauts guidé par les données	20
1.4.1. Méthodes d'identification en ligne	21
1.4.2. Approches de <i>machine learning</i> pour le diagnostic de défauts	25
1.5. Diagnostic de défauts basé sur les modèles et guidé par les données	35
1.6. Problème de diagnostic de défauts robuste	43
1.7. Conclusion	50
1.8. Bibliographie	51
Chapitre 2. Méthodes linéaires à paramètres variants	61
Mickael Rodrigues, Habib Hamdi et Didier Theilliol	
2.1. Introduction	61
2.2. Préliminaires : une approche classique	65
2.3. Énoncé du problème	67
2.4. Conception d'une commande active robuste tolérante aux défauts	70
2.4.1. Conception robuste de FTC basée sur des observateurs	70
2.4.2. Analyse de stabilité	72

2.5. Application : un bioréacteur anaérobique	79
2.6. Conclusion	85
2.7. Bibliographie	85
Chapitre 3. Approches floues et réseaux de neurones	89
Marcin WITCZAK, Marcin PAZERA, Norbert KUKUROWSKI	
et Marcin MRUGALSKI	
3.1. Introduction	89
3.2. Conception de modèle flou	91
3.2.1. Systèmes de Takagi-Sugeno	91
3.2.2. Génération de modèles TS par plongement non linéaire	92
3.3. Conception de modèle neuronal	95
3.3.1. Réseaux de neurones récurrents	95
3.3.2. Identification de l'incertitude du modèle neuronal	98
3.4. Estimation de défauts et diagnostic	99
3.4.1. Estimation de défauts d'actionneurs à l'aide de réseaux	
de neurones	99
3.4.2. Estimation de défauts de capteurs et d'actionneurs à l'aide	
de la logique floue	102
3.5. Commande à tolérance de défauts	106
3.5.1. Un aperçu du schéma de commande à tolérance de défauts	106
3.5.2. Estimation de défauts robuste et commande	108
3.5.3. Obtention d'un ensemble robuste invariant	111
3.5.4. FTC prédictive efficace	111
3.6. Exemples illustratifs	115
3.6.1. Exemple d'estimation de défaut de capteur et d'actionneur	115
3.6.2. Exemple de commande à tolérance de défauts	119
3.7. Conclusion	121
3.8. Remerciements	121
3.9. Bibliographie	122
Chapitre 4. Méthodes de commande prédictive par modèle	127
Krzysztof Patan	
4.1. Introduction	127
4.2. Principe du MPC	129
4.3. Robustesse du MPC	131
4.4. MPC robuste basée sur les réseaux de neurones	133
4.4.1. Modèles de réseaux de neurones	134
4.4.2. MPC non linéaire	137
4.4.3. MPC approximé	137
4.4.4. MPC robuste et non linéaire	138

4.4.5 MDC annuavimá rohvata	120
4.4.5. MPC approximé robuste	139
4.5. Commande robuste d'un servomécanisme pneumatique	141
4.5.1. MPC non linéaire robuste basé sur réseaux de neurones	142
4.5.2. MPC approximé robuste basé sur réseaux de neurones	146
4.6. Conclusion	147
4.7. Bibliographie	148
Chapitre 5. Modélisation non linéaire pour la commande à tolérance de défauts	151
5.1. Introduction	151
5.1.1. Diagnostic de défauts conjoint à la commande	155
5.1.2. Estimateurs de défauts adaptatifs non linéaires	158
5.1.3. Commande floue tolérante aux défauts	169
5.1.4. Commande récursive adaptative	173
5.1.5. Commande durable	183
5.2. Stratégies de commande tolérante aux défauts	185
5.2.1. Tolérance aux défauts et compensation	187
5.3. Diagnostic de défauts et commande tolérante	190
5.3.1. Conception de commande tolérante aux défauts	194
5.4. Conclusion	197
5.5. Bibliographie	198
Chapitre 6. Capteurs et actionneurs virtuels	203
6.1. Introduction	203
6.2. Énoncé du problème	204
6.3. Structure des capteurs et des actionneurs virtuels	208
6.4. Conception à base de LMI	212
6.5. Considérations additionnelles	215
6.6. Exemple d'application	218
6.6.1. Actionneurs virtuels	219
6.6.2. Capteurs virtuels	221
6.7. Conclusion	222
6.8. Bibliographie	223
Chapitre 7. Conclusions	225
Vicenç Puig et Silvio Simani	
7.1. Introduction	225
7.2. Remarques de clôture	230
7.3. Bibliographie	241

Chapitre 8. Problématiques de recherche ouvertes	251
8.1. Travaux futurs et problèmes ouverts 8.1.1. Objectifs de conception de commande durable 8.1.2. Concepts et approches de la commande durable 8.1.3. Approches de commande durable et méthodes de travail 8.1.4. Ambition de la conception de commande durable 8.1.5. Potentiels d'innovation en matière de commande durable 8.1.6. Impacts attendus de la commande durable 8.2. Conclusion 8.3. Bibliographie	253 257 260 265 270 271 273
Liste des auteurs	279
Index	281
Sommaire de <i>Diagnostic et commande à tolérance de fautes 1</i>	287