Table des matières

Avant-propos	1
René GUINEBRETIÈRE et Philippe GOUDEAU	
Chapitre 1. La jouvence du synchrotron européen ESRF :	
évolution ou révolution ?	7
Tobias SCHULLI et Gilbert CHAHINE	
1.1. Le synchrotron européen ESRF et l'EBS	7
1.2. Définition de la brillance	8
1.3. Bref historique des sources de rayons X	
et du rayonnement synchrotron	10
1.4. Origine de la grande brillance des sources synchrotron modernes	10
1.5. Les onduleurs : dispositifs d'insertion dans les sources	
de troisième génération	14
1.6. Influence des paramètres du faisceau d'électrons	
sur les caractéristiques d'émission	18
1.7. Conséquences de l'amélioration de la source sur les lignes de lumière	
et sur les expériences	21
1.8. Augmentation du flux cohérent de la source	22
1.9. Les lignes exploitant des aimants de courbures	23
1.10. Bibliographie	31
Chapitre 2. Concepts généraux en tomographie haute résolution	
par rayons X	33
Pierre BLEUET	00
2.1. Introduction	33

2.2. Les sources de rayonnement X pour la tomographie	
2.2.2. Le rayonnement synchrotron	
2.3. L'échantillon et son environnement proche	
2.3.1. La mécanique du porte-échantillon	
2.3.2. La préparation d'échantillon	
2.3.3. Les dégâts d'irradiation	
2.4. Grandissement et détection	
2.4.1. Grandissement	
2.4.2. Détection indirecte	
2.4.2. Detection indirecte	
2.5. La reconstruction	_
2.5.1. Formulation du problème direct	
2.5.2. Reconstruction analytique	
2.5.3. Reconstruction algébrique	
2.6. Les artefacts : cause, correction	
2.6.1. Ring artefacts	
2.6.2. Axe de rotation	
2.6.3. Bougé	
2.6.4. Durcissement de spectre	
2.6.5. Tomographie locale	
2.7. Autres contrastes	
2.7.1. Contraste de phase pour les matériaux légers	
2.7.2. Contraste chimique par fluorescence des rayons X	
2.7.3. Contraste cristallin par diffraction des rayons X	. 59
2.8. Galerie d'images	. 60
2.9. Bibliographie	. 62
Chapitre 3. Systèmes complexes naturels et manufacturés : apport des techniques d'imagerie de rayons X	65
Laurent MICHOT	
3.1. Introduction	. 65
3.2. Les techniques d'imagerie de rayons X	
3.2.1. Les techniques d'imagerie hyperspectrale dans le domaine	
des rayons X durs et tendres	. 68
3.2.1.1. La microfluorescence X	
3.2.1.2. La microdiffraction des rayons X	
3.2.1.3. La micro-absorption X	
3.2.2. La microscopie X dans le domaine des X mous	
3.2.2.1. La microscopie X en mode balayage : le STXM	
5.2.2.1. La fincioscopie A chi mode balayage . le 51 AM	. 00

3.2.3. La microscopie X en mode transmission : le TXM	82 85
3.4. Remerciements	86 86
3.3. Bibliographie	80
Chapitre 4. Apport des rayons X à l'étude de microstructures et propriétés mécaniques sous pression	93
Sébastien MERKEL, Nadège HILAIRET, Paul RATERRON et Angelika ROSA	
4.1. Introduction	93
4.2. Techniques expérimentales de hautes pressions	95
4.2.1. Presses « gros volume »	95
4.2.2. Cellule à enclumes de diamant	96
4.3. Méthodes de caractérisation in situ	99
4.3.1. Déformations	99
4.3.2. Propriétés de polycristaux	100
4.3.2.1. Textures	100
4.3.2.2. Contraintes	103
4.3.3. État local	106
4.3.3.1. Diffraction dite multigrains	106
4.3.3.2. Défauts	108
4.4. Conclusion	110
4.5. Bibliographie	110
Chapitre 5. Diffusion et diffraction des rayons X aux petits angles	
et matière molle : cas des polymères semi-cristallins	117
Sylvie Tencé-Girault	
5.1. Introduction	117
5.2. Présentation générale des polymères semi-cristallins	119
5.3. Diffusion et diffraction des rayons X aux petits angles	
et polymères semi-cristallins	122
5.3.1. Acquisition d'un diagramme	122
5.3.2. Traitement des diagrammes $I(q)$	124
5.3.3. Traitement des diagrammes $I(\varphi)$	126
5.4. Application de la diffusion des rayons X aux petits angles	
aux polymères semi-cristallins : cas du PVDF	128
5.4.1. Exemple 1 : structure et morphologie du PVDF,	
de la température ambiante à la fusion	131
5.4.2. Exemple 2 : le PVDF soumis à une traction uniaxiale,	
orientation, cavitation	134

5.4.2.1. Expériences au cours d'un essai de traction	124
à température ambiante	134
à différentes températures	136
5.4.3. Exemple 3 : mélange de PVDF avec un copolymère à blocs,	130
évolution de la morphologie	138
5.5. Conclusion	143
5.6. Remerciements.	144
5.7. Bibliographie	144
Chapitre 6. Les rayons X pour la caractérisation <i>in situ</i>	
et operando de catalyseurs hétérogènes	147
Christèle LEGENS	
6.1. Introduction	147
6.2. Couplage DRX-DRIFT-GC pour le suivi	17/
de la synthèse Fischer-Tropsch	149
6.2.1. La réaction Fischer-Tropsch	150
6.2.2. Description du couplage DRX-DRIFT-GC	150
6.2.3. Application à l'étude d'un catalyseur au cobalt	100
supporté sur alumine	152
6.2.3.1. Propriétés catalytiques	152
6.2.3.2. Caractérisation par DRX <i>operando</i>	153
6.2.3.3. Caractérisation par DRIFT <i>operando</i>	154
6.2.4. Conclusion	157
6.3. XPS environnemental pour le suivi de l'évolution de la surface	
d'un catalyseur de type Fischer-Tropsch	160
6.3.1. Bref historique	160
6.3.2. Principe de l'XPS environnemental	162
6.3.2.1. Interaction gaz-électrons	164
6.3.2.2. Le principe du pompage différentiel	165
6.3.2.3. Distance optimale échantillon-ouverture	167
6.3.2.4. Interaction gaz photons	168
6.3.2.5. Effets de charge	170
6.3.3. Étude d'un catalyseur au cobalt supporté sur silice	172
6.3.4. Conclusion	175
6.4. L'EXAFS <i>in situ</i> pour le suivi de l'activation des catalyseurs	177
d'hydrotraitement	176
6.4.1. La spectroscopie d'absorption X	177 179
0.4.2. Montage experimental et sequence analytique	1/9

6.4.3. Évolution des spectres XANES du Mo en fonction	100
de la température de sulfuration	180
6.4.4. Détermination du nombre de composantes principales et extraction des spectres purs par chimiométrie	183
6.4.4.1. Analyse en composantes principales (ACP)	183
6.4.4.2. Spectres purs et concentrations déterminés par la méthode	103
de résolution multivariée de courbe avec régressions alternées	186
6.4.5. Identification des composés purs déterminés par MCR-ALS	189
6.4.5.1. La première composante MCR intermédiaire (PC2)	189
6.4.5.2. La deuxième composante MCR intermédiaire (PC2)	192
6.4.5.3. La composante sulfure finale	192
6.4.6. Conclusion	193
6.5. Conclusion générale.	196
6.6. Remerciements.	190
6.7. Bibliographie	197
0.7. Biologiaphic	197
Chapitre 7. Étude des domaines ferroélectriques à basse dimensionnalité : apport de la diffraction de rayons X	203
7.1. Introduction : de l'importance des domaines dans les matériaux	
ferroélectriques à basse dimensionnalité	203
7.1.1. Quelques généralités sur les matériaux ferroélectriques	204
7.1.2. Apport de la diffraction de rayons X à l'étude	
des matériaux ferroélectriques	206
7.1.3. Les structures en domaines dans les couches minces	
ferroélectriques	207
7.1.3.1. Les structures polydomaines à 90°	208
7.1.3.2. Les structures polydomaines à 180°	209
7.1.4. Ingénierie des domaines dans les ferroélectriques :	
applications potentielles	210
7.2. Intérêt des super-réseaux pour l'étude des structures en domaines	
dans les ferroélectriques à basse dimensionnalité	
7.3. Étude des domaines dans des super-réseaux ferroélectriques	211
par diffraction des rayons X	211213
7.3.1. Étude d'une structure en domaines	213
	213213

 7.3.2.1. Mise en évidence des structures en domaines à 180° 7.3.2.2. Mise en évidence de la rotation de la polarisation 7.3.2.3. Mise en évidence d'une symétrie monoclinique 	218 219
de la structure polaire	220
7.3.3. Impact de la structure en domaines sur la transition de phase 7.3.4. Modélisation du profil de diffusion diffuse	224
des nanodomaines ferroélectriques	225
7.4. Conclusion	228
7.5. Remerciements	228
7.6. Bibliographie	229
Chapitre 8. L'éclairage à base de diodes électroluminescentes :	
le rôle des luminophores	235
8.1. L'éclairage : généralités	235
8.1.1. Comment comparer la qualité des différentes sources	
d'éclairage ?	235
8.2. Les lampes à LED	238
8.2.1. Les LED et la génération de la lumière blanche	240
8.2.2. L'architecture des LED commerciales	242
8.3. Qu'est-ce qu'un luminophore?	243
8.3.1. Les luminophores pour l'éclairage LED	244
8.3.2. Intégration du ou des luminophore(s) avec les LED	245
8.4. Luminophores de formulation Y ₃ Al ₅ O ₁₂ activés par des ions	
de terre rares	247
8.4.1. Le procédé sol-gel et la voie solvothermale	247
8.4.1.1. Synthèse par le procédé sol-gel de la matrice Y ₃ Al ₅ O ₁₂	
activée par l'ion Ce ³⁺ ou Tb ³⁺	248
8.4.1.2. Synthèse par voie solvothermale de la matrice $Y_3Al_5O_{12}$:	
Ce^{3+}	248
8.4.2. Caractérisations structurales et morphologiques	249
8.4.3. Diffusion des rayons X aux petits angles et spectroscopie	
d'absorption X	255
8.4.3.1. Diffusion des rayons X aux petits angles	255
8.4.3.2. Spectroscopie d'absorption X	259
8.5. Conclusion	266
8.6 Bibliographie	266

Chapitre 9. Les rayons X pour l'étude des matériaux	
du patrimoine	269
Claire GERVAIS	
9.1. Introduction	269
9.1.1. Les matériaux du patrimoine	270
9.1.2. Spécificités des matériaux du patrimoine	270
9.2. Un domaine interdisciplinaire bien démarqué	273
9.3. Matériaux du patrimoine, des matériaux d'avenir?	275
9.3.1. Le bleu de Prusse : un matériau multifonctionnel de demain	275
9.3.2. Les poteries vernissées : nanophotonique de pointe	276
9.3.3. Les fers archéologiques : estimer l'avenir lointain	276
9.3.4. Les matériaux anciens : un territoire riche	
de matériaux inexplorés	277
9.4. Avancées récentes dans l'étude des matériaux du patrimoine	
par les rayons X	278
9.4.1. Composition chimique : fluorescence X	278
9.4.2. Composition structurale à grande échelle : diffraction	
des rayons X	281
9.4.3. Composition structurale locale : spectroscopie d'absorption X	283
9.4.4. Microstructure: tomographie aux rayons X	286
9.5. Le futur des rayons X pour les matériaux du passé	289
9.6. Conclusion	290
9.7. Bibliographie	290
Liste des auteurs.	301
Listo dos datodis.	001
Index	303