Table des matières

Avant-propos	1
ntroduction. La révolution numérique	7
Chapitre 1. Le silicium et le germanium : du minerai à l'élément	23
1.1. Extraction et purification du silicium/découverte et extraction	
du germanium	23
1.1.1. Le silicium : du quartz au silicium métallurgique	23
par voie électrochimique	24
1.1.1.2. Extraction du silicium de la silice par voie chimique 1.1.1.3. Extraction du silicium par réduction carbothermique	25
de la silice : le silicium « métallurgique »	27
1.1.1.4. Purification du silicium produit au four à arc	28
1.1.2. Le germanium	29
1.1.2.1. Découverte et identification du germanium	29
1.1.2.2. Extraction et purification du germanium	30
1.2. Le silicium et le germanium, semi-conducteurs :	
caractéristiques électriques	30
1.2.1. Historique : la résistivité des « métaux » silicium et germanium	30
1.2.1.1. Le silicium « métal »	30
1.2.1.2. Le germanium « métal »	33
1.2.2. Les bandes d'énergie	34
1.2.3. Semi-conducteur intrinsèque : la paire électron-trou	36

	20
1.2.4. Semi-conducteur extrinsèque	38
1.2.4.1. L'énergie (niveau) de Fermi	40
1.2.5. Mécanisme de génération/recombinaison de paires	
électron-trou et « durée de vie » des porteurs minoritaires	41
1.2.5.1. Mécanisme de génération/recombinaison	
de paires électron-trou	41
1.2.5.2. Durée de vie des porteurs minoritaires	43
1.2.6. Influence de la température sur la concentration	
des porteurs majoritaires	43
1.2.7. Courant de conduction dans un semi-conducteur	45
1.2.8. Mobilité des porteurs majoritaires : électrons et trous	46
1.2.9. Résistivité du silicium et du germanium extrinsèques	49
1.3. Bibliographie	51
Chapitre 2. La diode à pointe	55
2.1. Caractéristiques et fonctions	56
2.1.1. Courbe caractéristique, effet redresseur	56
2.1.2. Contact redresseur et contact ohmique	58
2.1.2.1. Contact ohmique par effet tunnel	60
2.1.3. Fonctions de la diode à pointe	60
2.1.3.1. Composant d'un circuit de réception d'ondes radio AM	60
2.1.3.2. Composant d'un « convertisseur de fréquence »	61
2.1.3.3. Les diodes à pointe en germanium : composants	
de commutation de circuits logiques (commutateurs)	63
2.1.4. Bases physiques du fonctionnement d'une diode à pointe	63
2.1.4.1. Comportement en fréquence	63
2.1.4.2. Mélangeur d'un convertisseur de fréquence	65
2.1.4.3. Commutation	66
2.2. Historique	67
2.2.1. Découverte de l'« effet redresseur »	67
2.2.2. Découverte de la « détection » d'ondes radio AM par la diode	
à pointe	67
2.2.3. Découverte de la diode à pointe à base de silicium	68
2.2.4. La diode à pointe à base de germanium	69
2.2.5. Réception des ondes radars	70
2.3. Les recherches poursuivies pendant la Seconde Guerre mondiale	73
2.3.1. Recherches sur le silicium	73
2.3.1.1. Découverte du silicium N et du silicium P	73
2.3.1.2. Production de silicium de pureté 5N	79

2.3.1.3. Traitement d'oxydation du silicium : l'« effet <i>gettering</i> » 2.3.2. Recherches sur le germanium	81 83 83
courbes caractéristiques	84
2.3.2.3. Courant dans une diode à base de germanium N	85
sur la pastille de germanium N	85
de germanium après la Seconde Guerre mondiale	86
2.5. Annexe: courants dans une diode métal-semi-conducteur	89
2.6. Bibliographie	92
Chapitre 3. Le transistor à pointes	95
3.1. L'effet de champ	96
3.1.1. Effet de champ « direct », effet de champ « inverse »	96
3.1.2. Les études des Bell Labs	98
3.1.2.1. Les « états de surface » : pièges superficiels	100
3.1.2.2. La mise en évidence de l'effet de champ direct	101
3.2. Le transistor à pointes à base de germanium	104
3.2.1. La découverte du transistor à pointes à base	
de germanium N	104
de germanium N	106
3.2.3. Le transistor à pointes de Herbert Mataré et Heinrich Welker3.3. Le développement industriel du transistor à pointes à base	109
de germanium N	110
3.4. Bibliographie	112
Chapitre 4. La diode PN	115
4.1. Caractéristiques et fonctions	116
de silicium	116
4.1.2. Le fonctionnement d'une diode PN	118
4.1.3. Fonctions de la diode	123
4.1.3.1. La diode PN composant de commutation	125
4.1.3.2. La diode PN composant de circuits analogiques	125

4.1.4. Action des dopants et des impuretés sur la « durée de vie »	
des porteurs minoritaires	126
4.1.4.1. Durée de vie des porteurs minoritaires en fonction	
du dopage	126
4.1.4.2. Action des impuretés métalliques	128
4.1.4.3. Action de l'oxygène et du carbone	130
4.1.5. Le développement des diodes PN	131
4.1.5.1. La diode PN en germanium	131
4.1.5.2. La diode PN en silicium	132
4.2. Production de germanium et de silicium électroniques	133
4.2.1. Production du germanium électronique	133
4.2.1.1. Purification du germanium par procédé physique	134
4.2.1.2. Production et dopage de germanium monocristallin	134
4.2.1.3. Purification du germanium par procédé de fusion de zone.	136
4.2.2. Production de silicium électronique	137
4.2.2.1. Production de silicium polycristallin de très haute pureté.	137
4.2.2.2. Procédés de production de silicium polycristallin	
de très haute pureté	138
4.2.3. Fabrication de monocristaux	144
4.2.3.1. Procédé CZ (Czochralski)	144
4.2.3.2. Production du silicium monocristallin sans défauts	
de structure (dislocations)	147
4.2.3.3. Le procédé de la zone flottante (ZF)	147
4.2.4. Fabrication d'une diode en silicium par le procédé CZ	148
4.2.5. Développements industriels des procédés de tirage	
de monocristaux	149
4.3. Annexe: bases physiques du fonctionnement de la diode PN	151
4.3.1. Diagramme de bandes d'énergie et barrière de potentiel	151
4.3.2. Courants d'électrons et de trous : « durée de vie »	
et « longueur de diffusion » des « porteurs minoritaires »	154
4.3.3. Courant dans la diode	156
4.4. Bibliographie	157
5 1	
Chapitre 5. Le transistor bipolaire	161
5.1. Caractéristiques et fonctions	162
5.1.1. Historique	163
5.1.1.1. L'invention de Shockley	163
•	

5.1.1.2. L'expérience de Shive et la « durée de vie »	
des porteurs minoritaires	164
5.1.2. Le fonctionnement du transistor bipolaire	165
5.1.2.1. Les modes de fonctionnement	165
5.1.2.2. Le temps de transit des porteurs minoritaires	
à travers la base	168
5.1.3. Les fonctions de base	169
5.1.3.1. Le fonctionnement du circuit de base	169
5.1.3.2. Commutation	171
5.1.3.3. Amplification de courants faibles	172
5.1.3.4. Réponse en fréquence	174
5.2. Les technologies des transistors	174
5.2.1. Tirage de monocristal : procédé CZ et procédé mixte	
CZ-diffusion	175
5.2.1.1. Transistor bipolaire en germanium	175
5.2.1.2. Transistor bipolaire en silicium	177
5.2.2. Procédé Philco	177
5.2.3. Procédé « par alliage »	178
5.2.3.1. Drift transistor	180
5.2.4. Vapodéposition et diffusion	180
5.2.4.1. Le procédé	180
5.2.4.2. Historique	182
5.2.5. Procédé « par implantation ionique »	185
5.3. Les transistors bipolaires en silicium de structures « mésa »	
et « planar »	186
5.3.1. Masquage par oxydation (<i>oxide masking</i>)	186
5.3.2. Structure mésa	187
5.3.3. Structure planar	188
5.3.4. Couche épitaxiale de silicium	191
5.4. Les développements industriels	193
5.4.1. Transistors bipolaires en germanium	194
5.4.2. Transistors bipolaires en silicium	197
5.4.3. Les satellites Vanguard 1, Explorer 1 et 3	199
5.5. Bibliographie	199
• •	
Chapitre 6. Le transistor à effet de champ MOSFET	205
6.1. Caractéristiques et fonctions	206
6.1.1. Introduction	206
6.1.2. Fonctionnement du transistor MOSFET	207
6.1.2.1. La capacité MOS	207

6.1.2.2. Les modes de fonctionnement du transistor MOSFET,	
le temps de transit	208
6.1.3. Les fonctions de base	212
6.1.3.1. Fonction commutation	212
6.1.3.2. Fonction amplification	213
6.1.4. Le composant CMOS	215
6.1.5. Historique du développement du transistor MOSFET	216
6.1.6. L'action des impuretés sur la dispersion et l'instabilité	
des caractéristiques électriques des transistors	220
6.2. La miniaturisation et les matériaux des transistors MOSFET	222
6.2.1. La miniaturisation : la loi de Moore	222
6.2.2. Les matériaux de la grille	223
6.2.2.1. Électrode de grille en silicium polycristallin	
(self-aligned gate) et nouveau processus de fabrication	223
6.2.2.2. Électrode de grille en siliciure de métal réfractaire	226
6.2.2.3. Diélectrique de grille en silice	227
6.2.2.4. Diélectrique de grille en oxynitrure de silicium	228
6.2.3. Nouvelle grille HKMG et nouveau processus de fabrication	228
6.2.3.1. Nouvelle grille HKMG constituée d'un diélectrique	
de constante diélectrique élevée et d'une électrode de grille	
en métal réfractaire	228
6.2.3.2. Le procédé ALD de dépôt	229
6.2.4. Les matériaux de la source et du drain (strained silicon)	232
6.2.5. Nouvelles architectures	232
6.2.5.1. Transistor FD-SOI MOSFET	233
6.2.5.2. Transistor FinFET MOSFET	234
6.3. Annexe	235
6.4. Bibliographie	236
Index des none mana	044
Index des noms propres	241
Index des noms communs	243
Sommaire de Le silicium, du sable aux puces 2	247