Table des matières

Avant-propos	1
Préface	5
Chapitre 1. Observer les spectres IR dans le spatial	7
1.1. Introduction	7
1.2. Spectroscopie par transformée de Fourier	14
1.2.1. Principe d'acquisition d'un spectre IR par interférométrie 1.2.2. Conception et fonctionnement d'un interféromètre	16
à grande différence de marche	18
1.2.3. Spectroscopie d'absorption en matrices par FTIR	21
1.2.4. Spectroscopie laser en matrices par FIL et DR IR-IR	28
1.3. Spectroscopie d'absorption laser en cavité résonante	35
Laser Absorption Spectroscopy (ICLAS)	39
ou <i>Cavity Ring Down Spectroscopy</i> (CRDS)	42
Spectroscopy (FCS)	48
1.4. Spectroscopie pour l'observation dans le spatial	52
1.4.1. Ellipsométrie spectroscopique pour le spatial	53
1.4.2. Spectroscopie embarquée sur sonde spatiale	68
1.4.3. Spectroscopie LIDAR pour observer le spatial	72
1.5. Conclusion	76
1.6. Annexe : la distorsion instrumentale et le traitement des données	76

Chapitre 2. Interactions entre une molécule et son environnement solide	83
2.1. Introduction	84
2.2. Système « molécule active-environnement solide »	86
2.2.1. Énergie d'interaction binaire	86
2.2.2. Contribution dispersion-répulsion	88
2.2.3. Contribution électrostatique	88
2.2.4. Contribution d'induction.	90
	, ,
2.3. Développement à deux centres du terme $\left(\frac{1}{\left \vec{\mathbf{r}}_{ij_k}\right }\right)$	91
2.4. Conclusion	94
2.5. Annexes	94
2.5.1. Moments multipolaires et polarisabilité dipolaire	
d'une molécule par rapport à son repère fixe $(G, \vec{X}, \vec{Y}, \vec{Z}) \dots \dots$	94
2.5.2. Éléments de matrice de rotation	95
2.5.2.1. Subroutine de calcul des éléments de matrice de rotation	95
2.5.3. Coefficients de Clebsch-Gordan	97
2.5.3.1. Subroutine de calcul des coefficients de Clebch-Gordan	97
Chapitre 3. Nanocage de matrice de gaz rare	99
3.1. Introduction	99
3.2. Les gaz rares à l'état solide	100
3.3. Inclusion de la molécule et déformation du cristal dopé	103
3.3.1. Inclusion de la molécule	103
3.3.2. Déformation du cristal dopé	105
3.3.3. NH_3 en matrice d'argon	108
3.3.4. Renormalisation de l'hamiltonien du système	108 110
3.4. Mouvements de NH ₃ piégée en matrice d'argon	110
3.4.1. Mode de vibration-inversion ν_2	110
3.4.2. Mouvement d orientation	113
3.4.4. Couplage « mouvement d'orientation-bain thermique »	120
3.5. Spectres infrarouges	120
3.5.1. Coefficient d'absorption infrarouge	121
3.5.2. Spectres barres	121
3.5.2.1. Infrarouge lointain – FIR (<i>Far infrared</i>)	123
3.5.2.2. Infrarouge proche – NIR (<i>Near infrared</i>)	124
Title (Town wy mea).	

	100
3.5.3. Profil spectral	126
3.5.3.1. Infrarouge lointain	126
3.5.3.2. Infrarouge proche	128
3.6. Annexes	129
3.6.1. Modes normaux de vibrations d'un cristal de Bravais	
de symétrie cubique à faces centrées (cfc)	129
3.6.2. Ajustement de l'énergie potentielle de rotation peu perturbée	
sur la base des éléments de la matrice de rotation	134
3.6.3. Coefficients de développement du couplage « orientation	
de la molécule-vibrations du réseau (phonons) »	135
3.6.3.1. Couplage à 1 phonon	135
Chapitre 4. Nanocages de clathrates hydrates	137
4.1. Introduction	137
4.2. Modèle de substitution étendu.	138
4.3. Structures des clathrates	144
4.4. Inclusion d'une molécule CH ₄ ou NH ₃ dans une nanocage	144
	145
de clathrate	145
4.4.1. Modèle d'inclusion	_
4.4.2. Énergie potentielle d'interaction – Configuration d'équilibre	147
4.5. Hamiltonien du système et séparation des mouvements	151
4.6. Mouvement de translation	154
4.6.1. Cas de CH ₄ – Nanocages de la structure sI	155
4.6.1.1. CH ₄ -sI-petite cage	155
4.6.1.2. CH ₄ -sI-grande cage	156
4.6.2. Cas de NH ₃ – Nanocages de la structure sI	156
4.6.2.1. NH ₃ -sI-petite cage	156
4.6.2.2. NH ₃ -sI-grande cage	157
4.7. Mouvements de vibrations	157
4.7.1. Cas de CH ₄ – Nanocages de la structure sI	159
4.7.2. Cas de NH ₃ – Nanocages de la structure sI	159
4.7.2.1. Mouvement de vibration-inversion de NH ₃	160
4.8. Mouvement d'orientation	160
4.8.1. Cas de CH ₄ – Nanocages de la structure sI	161
4.8.2. Cas de NH ₃ – Nanocages de la structure sI	165
4.8.2.1. NH ₃ -sI-petite cage	165
4.8.2.2. NH ₃ -sI-grande cage	170
4.9. Spectres barres	173
4.9.1. Infrarouge lointain	173
4.9.2. Infrarouge proche	175

4.9.2.1. Cas de CH_4 – Nanocages de la structure sI	176
4.9.2.2. Cas de NH ₃ – Nanocages de la structure sI	177
4.10. Annexes	178
dans l'approximation des librateurs harmoniques	178
sans dimension	181
sans dimension	101
Chapitre 5. Nanocage de fullerène	185
5.1. Introduction	186
5.2. Molécule d'ammoniac piégée dans une nanocage de fullerène C ₆₀	187
5.2.1. Structure de la nanocage de fullerène C ₆₀	187
5.2.2. Inclusion de NH ₃ dans une nanocage de fullerène C ₆₀	188
5.2.3. Énergie potentielle d'interaction – Configuration d'équilibre	190
5.3. Surfaces d'énergie potentielle – Modèle inertiel	192
5.3.1. Mouvement d'orientation-translation	192
5.3.2. Mouvement de translation	194
5.3.3. Mouvement de vibration-inversion-translation	195
5.3.4. Lagrangien cinétique	196
5.4. Traitement quantique	198
5.4.1. Modes de vibrations – Déplacements des fréquences	199
5.4.2. Mode de vibration-inversion	200
5.4.3. Mouvement d'orientation	202
5.5. Spectres barres	204
5.5.1. Infrarouge lointain et micro-ondes	204
5.5.2. Infrarouge proche	205
5.6. Annexes	207
5.6.1. Programme en langage Fortran	207
5.6.2. Expressions des composantes du vecteur moment dipolaire	
et ses dérivées par rapport aux coordonnées normales de vibrations	223
Chapitre 6. Adsorption sur un substrat de graphite	225
6.1. Introduction	225
6.2. Système « molécule NH ₃ -substrat » – Énergie d'interaction	226
6.2.1. Description du système	226
6.2.2. Énergie d'interaction « molécule NH ₃ -substrat de graphite »	228
6.2.2.1. Contribution dispersion-répulsion	228
6.2.2.2. Contributions électrostatique et d'induction	229
6.3. Configuration d'équilibre et surfaces d'énergie potentielle	230

6.4. Hamiltonien du système	233
6.4.1. Séparation des mouvements	234
6.4.2. Hamiltoniens renormalisés	236
6.4.3. Mouvements de translation	236
6.4.4. Mouvements de vibrations	237
6.4.4.1. Modes de vibrations v_1 , v_3 et v_4 de la molécule NH ₃	237
6.4.4.2. Mode de vibration-inversion v_2 de la molécule NH ₃	238
6.4.5. Mouvement d'orientation	242
6.4.6. Couplage « mouvement d'orientation-bain thermique »	246
6.5. Spectres infrarouges de la molécule NH ₃ adsorbée sur le substrat	
de graphite	247
6.5.1. Infrarouge lointain	249
6.5.2. Infrarouge proche	252
6.5.2.1. Mode d'élongation symétrique $\nu_1 \dots \dots \dots$	253
6.5.2.2. Modes de déformations antisymétriques v_3 et v_4	255
6.5.2.3. Mode de vibration-inversion v_2	255
6.6. Conclusion	259
6.7. Annexes	259
6.7.1. Programme en langage Fortran	259
6.7.2. Expressions des termes de couplage « orientation	
de la molécule-phonons du bain thermique »	269
6.7.3. Expressions des composantes du vecteur moment dipolaire	
et ses dérivées par rapport aux coordonnées normales de vibrations	269
Diblio graphia	074
Bibliographie	271
Index	301
Sommaire de Spectroscopie infrarouge de toupies symétriques et sphériques pour l'observation spatiale 1	305