Table des matières

Avant-propos Abdourrahmane M. Atto, Francesca Bovolo et Lorenzo Bruzzone	1
Chapitre 1. Champs de Markov et séries chronologiques d'images multicapteurs et multirésolution	5
Ihsen HEDHLI, Gabriele MOSER, Sebastiano B. SERPICO et Josiane ZERUBIA	
1.1. Introduction	5
de séries chronologiques	5
1.1.2. Classification multicapteur et multirésolution	6
1.1.3. Travaux antérieurs	9
1.2. Méthodologie	13
1.2.1. Vue d'ensemble des approches proposées	13
1.2.2. Modèle hiérarchique associé à la première méthode proposée	14
1.2.3. Modèle hiérarchique associé à la seconde méthode proposée	18
1.2.4. Inférence du MPM hiérarchique multicapteur	20
1.2.5. Estimation de densité de probabilité par l'intermédiaire	
de mélanges finis	23
1.3. Exemples de résultats expérimentaux	24
1.3.1. Résultats de la première méthode	24
1.3.2. Résultats de la seconde méthode	28
1.4. Conclusion	32
1.5. Remerciements	34
1.6. Ribliographie	34

Chapitre 2. Techniques de classification basées sur les pixels
pour les séries chronologiques d'images satellitaires 41
Charlotte Pelletier et Silvia Valero
2.1. Introduction
2.2. Concepts de base en classification supervisée de télédétection 43
2.2.1. Préparation des données pour les algorithmes de classification 44
2.2.2. Considérations essentielles lors de l'entraînement
de classifieurs supervisés
2.2.3. Évaluation des performances de classification 51
2.3. Algorithmes traditionnels de classification
2.3.1. Machines à vecteurs de support
2.3.2. Forêts aléatoires
2.3.3. k plus proches voisins 67
2.4. Stratégies de classification basées sur des représentations
d'attributs temporels
2.4.1. Approches de classification basées sur la phénologie
2.4.2. Approches de classification basées sur un dictionnaire
2.4.3. Approches de classification basées sur les <i>shapelets</i>
2.5. Approches d'apprentissage profond
2.5.1. Introduction à l'apprentissage profond
2.5.2. Réseaux de neurones convolutifs
2.5.3. Réseaux de neurones récurrents
2.6. Bibliographie
Chapitre 3. Analyse sémantique de séries chronologiques
d'images satellitaires
Corneliu Octavian DUMITRU et Mihai DATCU
3.1. Introduction
3.1.1. Exemples typiques de SITS
3.1.2. Acquisitions irrégulières
3.1.3. Structure du chapitre
3.2. Le besoin d'une sémantique dans les SITS
3.3. Métriques de similarité
3.4. Méthodes d'attributs
3.5. Méthodes de classification
3.5.1. Apprentissage actif
3.5.2. Rétroaction de pertinence
3.5.3. Reconnaissance de formes basée sur la compression
3.5.4. Allocation de Dirichlet latente
3.6. Conclusion
3.7. Remerciements
3.8. Bibliographie

Chapitre 4. Analyse de séries chronologiques d'images	
satellitaires optiques pour des applications	=
environnementales	125
Matthieu MOLINIER, Jukka MIETTINEN, Dino IENCO, Shi QIU et Zhe ZHU	
4.1. Introduction	125
4.2. Séries chronologiques annuelles	127
4.2.1. Aperçu des méthodes de séries chronologiques annuelles	127
4.2.2. Exemples d'applications d'analyse de séries chronologiques	
annuelles pour la surveillance de l'environnement	129
4.2.3. Vers l'analyse de séries chronologiques denses	133
4.3. Analyse de séries chronologiques denses	100
utilisant toutes les données disponibles	134
4.3.1. Rendre les séries chronologiques denses cohérentes	135
4.3.2. Méthodes de détection de changements	139
4.3.3. Synthèse et développements futurs	144
4.4. Approches d'analyse de séries chronologiques basées	
sur l'apprentissage profond	145
4.4.1. Réseaux neuronaux récurrents (RNN) pour les séries	1.0
chronologiques d'images satellitaires	148
4.4.2. Réseaux neuronaux convolutifs (CNN) pour les séries	
chronologiques d'images satellitaires	151
4.4.3. Modèles hybrides : modèles à réseaux neuronaux récurrents	
convolutifs (ConvRNN) pour les séries chronologiques	
d'images satellitaires	152
4.4.4. Synthèse et développements futurs	155
4.5. Au-delà des séries chronologiques d'images satellitaires	
et de l'apprentissage profond : convergence entre les approches	
pour les séries chronologiques et la vidéo	156
4.5.1. Fréquence accrue d'acquisition des images : des séries	
chronologiques aux animations « vue par vue »	
et vidéos spatioportées	156
4.5.2. Apprentissage profond et vision par ordinateur	
en tant que facilitateurs technologiques	158
4.6. Conclusion	160
4.7. Bibliographie	160
Chapitre 5. Revue de l'évaluation multitemporelle des dommages	
dus aux séismes à l'aide d'images satellitaires	175
Gülşen TAŞKIN, Esra ERTEN et Enes Oğuzhan ALATAŞ	
5.1. Introduction	175
5.1.1 Méthodologie de recherche et statistiques	179

5.2. Évaluation par satellite des dommages dus aux séismes	184
5.3. Prétraitement d'images satellitaires avant l'évaluation des dommages .	185
5.4. Analyse d'images multisources	188
5.5. Exploration d'attributs contextuels pour l'évaluation des dommages	190
5.5.1. Attributs texturaux	190
5.5.2. Méthodes à base de filtres	194
5.6. Analyse d'images multitemporelles pour l'évaluation des dommages .	196
5.6.1. Utilisation de l'apprentissage automatique dans un problème	
d'évaluation des dommages	197
5.6.2. Évaluation rapide des dommages dus aux séismes	202
5.7. Compréhension des dégâts à la suite d'un séisme	
à l'aide de SAR satellitaire	204
5.7.1. Paramètres fondamentaux de SAR et vecteur d'acquisition	208
5.7.2. Méthodes cohérentes pour l'évaluation des dommages	211
5.7.3. Méthodes non cohérentes pour l'évaluation des dommages	215
5.7.4. Évaluation des dommages d'après des données SAR	
uniquement postérieures à un séisme	219
5.7.5. Combinaison de méthodes cohérentes et non cohérentes	
pour l'évaluation des dommages	221
5.7.6. Résumé	223
5.8. Usage de sources de données auxiliaires	224
5.9. Scores d'endommagement	225
5.10. Conclusion	228
5.11. Bibliographie	231
Chapitre 6. Apprentissage multiclasse multi-étiquette	
de changements d'état à partir de séries	
chronologiques d'images	247
Abdourrahmane M. Atto, Héla Hadhri, Flavien Vernier	
et Emmanuel Trouvé	
6.1. Introduction	247
6.2. Jeu de données de changements d'état de grain grossier à fin	249
6.3. Modèles d'apprentissage profond par transfert pour la classification	
des changements d'état	257
6.3.1. Bibliothèque de modèles d'apprentissage profond	257
6.3.2. Structures de graphes pour la bibliothèque de CNN	257
6.3.3. Dimensionnalités des apprenables pour la bibliothèque de CNN	260
6.4. Analyse des changements d'état	262
6.4.1. Adaptations de l'apprentissage par transfert aux problèmes	2
de classification des changements d'état	262
	264

Liste des notation																				
Liste des auteurs														•				 •		275
Index																				277
Sommaire de Détection de changements et analyse des séries temporelles d'images 1													281							