Table des matières

Avant-propos	1
Liste des notations	5
Chapitre 1. Représentation des systèmes : un point de vue historique	3
1.1. Fonctions et matrices de transfert	2
1.1.1. Fonctions de transfert	_
	_
r r	
· · · · · · · · · · · · · · · · · · ·	
1.2.2. Systèmes d'état à temps discret	_
1.2.3. Commandabilité, observabilité	_
1.2.4. Pôles d'un système d'état	-
1.2.5. Stabilité des systèmes linéaires stationnaires	_
1.3. Approche « géométrique »	
1.3.1. Formalisme de l'approche géométrique	
1.3.2. Sous-espaces atteignable et non observable	8
1.3.3. Commandes à retour d'état, observateurs	8
1.3.4. Décomposition canonique de Kalman, stabilisabilité	
et détectablité	0
1.4. Description par matrices polynomiales	4
1.4.1. Test PBH (critère de Hautus)	4
1.4.2. Représentation de Rosenbrock	5
1.5. L'approche comportementale	9

1.5.1. Commandabilité sans variables de commande	39
1.5.2. Le comportement d'un système	40
1.5.3. Commandablilité et autonomie	40
1.5.4. Observabilité dans l'approche comportementale	44
1.6. Module d'un système	45
1.6.1. Utilisation des modules en automatique	45
1.6.2. Approche fliessienne	46
1.6.3. Caractérisation en termes de modules de la commandabilité	
et de l'observabilité	47
1.7. Le formalisme de l'analyse algébrique	48
1.7.1. Nature de l'analyse algébrique	48
1.7.2. La contribution d'Oberst et ses conséquences	49
Chapitre 2. Systèmes linéaires : notions et résultats généraux	57
2.1. Systèmes de commande	57
2.1.1. Le formalisme des systèmes de commande	57
2.1.2. Matrice de transfert : cas général	59
2.1.3. Représentation d'état d'un système de commande	60
2.2. Équivalence stricte des systèmes de Rosenbrock	64
2.2.1. Représentations de Rosenbrock admissibles	64
2.2.2. Équivalence stricte	66
2.3. Commandabilité, observabilité et leur dualité : point	00
de vue algébrique	69
2.3.1. Commandabilité algébrique	69
2.3.2. Commandabilité algébrique des systèmes d'état (temps continu).	72
2.3.3. Commandabilité algébrique des systèmes d'état (temps discret) .	78
2.3.4. Dualité algébrique	81
2.3.5. Observabilité algébrique et principe de dualité algébrique	89
2.4. Atteignabilité, observabilité et leur dualité : point de vue kalmanien	93
2.4.1. Commandabilité complète d'un système d'état (temps continu) .	93
2.4.2. Atteignabilité et commandabilité complètes d'un système d'état	00
(temps discret)	99
2.4.3. Observabilité des systèmes d'état (temps continu)	101
2.4.4. Observabilité et constructibilité complètes des systèmes d'état (temps discret)	106
Chapitre 3. Pôles et zéros des systèmes linéaires, interconnexion	
et stabilisation	113
3.1. Pôles et zéros des systèmes linéaires invariants continus ou discrets	113
3.1.1. Pôles du système, pôles et zéros de transmission	113
3.1.2. Zéros de découplage en entrée-sortie et modes cachés	124

3.1.3. Relations entre pôles, pôles de transmission et modes cachés	127
3.1.4. Zéros invariants	129
3.1.5. Interprétation dynamique des différents pôles et zéros	134
3.2. Pôles et zéros des systèmes interconnectés	135
3.2.1. Diagramme d'un système de commande	135
3.2.2. Interconnexion des systèmes	135
3.2.3. Interconnexion en série	137
3.2.4. Interconnexion en parallèle	142
3.2.5. Interconnexion par bouclage	144
3.2.6. Paramétrisation des compensateurs stabilisants de Youla-Kučera .	150
Chapitre 4. Systèmes aux équations différentielles	
aux différences	161
4.1. Systèmes régis par des équations différentielles fonctionnelles	161
4.1.1. Équations différentielles fonctionnelles de type retardé	162
4.1.2. Équations différentielles fonctionnelles de type neutre	163
4.1.3. Cas de retards infinis	166
4.1.4. Équations différentielles fonctionnelles linéaires	167
4.1.5. Stabilité des équations différentielles fonctionnelles	173
4.2. Systèmes linéaires stationnaires à retards groupés	176
4.2.1. Définition et mise en forme simplifiée	176
4.2.2. Commensurabilité ou incommensurabilité des retards	179
4.2.3. Cas de retards commensurables	179
4.2.4. Questions homologiques	182
4.3. Systèmes linéaires stationnaires à retards distribués	189
4.3.1. L'anneau \mathcal{H} : cas de retards non commensurables $\dots \dots$	189
4.3.2. Les anneaux \mathcal{H} et \mathcal{H}_0 : cas de retards commensurables	197
4.3.3. Commandabilité et observabilité des \mathcal{H} -systèmes	199
4.3.4. Stabilité des \mathcal{H} -systèmes	199
4.3.5. Pôles et zéros des \mathcal{H} -systèmes	203
Annexe. Mathématiques de la théorie des systèmes	205
A.1. Transformation de Laplace	205
A.2. C_0 -semi-groupes d'opérateurs	228
A.3. Variations sur le thème des cogénérateurs injectifs	245
A.4. Compléments d'algèbre linéaire	272
Bibliographie	287
Index	299
muex	233