Table des matières

Préface de Franz-Josef Ulm	1
Préface de Pierre Labbé	5
Introduction	9
Chapitre 1. Mécanismes de déformation et de rupture des bétons .	13
1.1. Le béton : matériau à la fois répandu et méconnu	13
1.2. La composition et le comportement du béton au jeune âge	16
1.2.1. La maturation du béton	17
1.2.2. Conséquences de la maturation et phénomènes liés	
au vieillissement du béton	20
1.3. Principaux aspects du comportement mécanique du béton	23
1.3.1. Le béton sous chargement uniaxial	23
1.3.1.1. Compression uniaxiale	23
1.3.1.2. Traction uniaxiale	26
1.3.2. Le béton sous chargement multiaxial	31
1.3.2.1. Comportement sous chargement biaxial	33
1.3.2.2. Comportement sous chargement triaxial de compression	34

Chapitre 2. Concept d'endommagement et son applicabilité au béton.	41
2.1. Concept d'endommagement	41 43

2.1.2. Loi d'endommagement progressif de Katchanov	44
2.1.3. Couplage élasticité-endommagement	47
2.1.3.1. Analyse du cas 1D	47
2.1.3.2. Généralisation au cas 3D	48
2.2. Bases théoriques de la mécanique de l'endommagement	50
2.2.1. Couplage élasticité-endommagement	50
2.2.1.1. Application à l'élasticité linéaire.	52
2.2.2. Théorie de l'endommagement isotrope	53
2.2.3. Seuil d'endommagement et notion de surface de charge	55
Chapitre 3. Modélisation de l'endommagement	57
3.1. Modèle dit Mazars, pour les chargements monotones	57
3.1.1. Équations constitutives.	57
3.1.2. Utilisation du modèle (cas uniaxial)	61
3.1.3. Forces et faiblesses du modèle Mazars	64
3.2. Modèle pour les chargements cycliques : le μ modèle	66
3.2.1. Concept de variable d'endommagement effectif	66
3.2.2. Équations constitutives	67
3.2.2.1. Évolution des endommagements	68
3.2.2.2. Inscription du μ modèle dans le cadre thermodynamique	70
3.2.3. Réponse du μ modèle sous divers types de chargement	71
3.2.3.1. Chargement uniaxial	71
3.2.3.2. Chargement biaxial	75
3.2.4. Adaptation du μ modèle au cas de chargements confinés	78
3.2.4.1. Faibles confinements	79
3.2.4.2. Moyens et forts confinements	80
Chapitre 4. Numérisation de l'endommagement.	83
4.1. Rappels sur les concepts présidant à l'usage des éléments finis	83
4.2. Organigrammes de principe	85
4.2.1. Organigramme pour le modèle Mazars	85
4.2.2. Organigramme pour le μ modèle	86
4.3. Préparation des données	87
4.3.1. Identification des paramètres de modélisation	88
de compression	88
4.3.1.2. E, $\varepsilon_{\ell_0}(\varepsilon_0)$ identifiables à partir d'essais de traction	00
(directs ou indirects)	89

92
93
94
96
96

5.1. Calculs par éléments finis 2D	101
5.1.1. Détails du programme expérimental	102
5.1.2. Numérisation du problème	103
5.1.3. Résultats	105
5.1.3.1. À l'échelle globale	105
5.1.3.2. À l'échelle locale	106
5.2. Calculs par éléments poutres Timoshenko enrichis	108
5.2.1. Forces et faiblesses de la description par poutres multifibres	109
5.2.2. Biais de résultats provenant du choix des paramètres matériaux	110
5.2.3. Poutres multifibres et localisation des déformations	111
5.2.4. Description multifibre enrichie et utilisation	
de paramètres adaptés	114
5.2.4.1. Processus de fissuration	114
5.2.4.2. Comportement cyclique enrichi du béton	116
5.2.5. Simulations basées sur la description multifibre enrichie	119
5.3. Calculs multifibres et accès aux indicateurs de fissuration	122
5.3.1. Champs d'endommagement.	122
5.3.2. Ouverture des fissures	123
 5.2.1. Forces et faiblesses de la description par poutres multifibres 5.2.2. Biais de résultats provenant du choix des paramètres matériaux 5.2.3. Poutres multifibres et localisation des déformations 5.2.4. Description multifibre enrichie et utilisation de paramètres adaptés	109 110 111 114 114 114 116 119 122 122

Chapitre 6. Modélisations de situations liées à des chargements particuliers

des chargements particuliers	127
6.1. Simulation des effets de vitesse	127
6.1.1. Analyse issue de l'expérimentation	127
6.1.2. Chargement à haute vitesse : application au <i>spalling test</i>	132
6.1.3. Chargement à vitesse moyenne : impact sur une poutre en BA	134
6.2. Simulation des effets de la maturation du béton	137
6.2.1. Problèmes posés par le comportement du béton au jeune âge	138
6.2.2. Cas d'une poutre en situation de retrait gêné	138
6.2.2.1. Détails de l'essai RG8 du programme CEOS.fr	138
6.2.2.2. Principes retenus pour la simulation.	140

 6.2.3. Modèle thermomécanique du béton au jeune âge	140 141 143 145
du problème	145 149
chargement mécanique	149 160
Chapitre 7. Cas mixant éléments poutres et éléments plans	163
7.1. Simulation du comportement d'un voile en béton armé7.1.1. Modèle pour les murs structuraux : béton armé équivalent	163
(BAE)	164
7.1.2. Application au cas du <i>shear wall</i> de l'expérimentation SAFE	166
7.1.2.1. Comportement cyclique global	168
7.1.2.2. Comportement cyclique local	169
7.2. Application à une structure combinant murs, poutres et poteaux	170
7.2.1. Modelisation BAE enrichie	172
7.2.2. Modelisation de la reponse de la maquette SMART	1/4
7.3. Calcul couplant elements finis 2D et poutres multifibres	1/6
/.3.1. Etude de cas : perte de portance d'un poteau	177
dans une structure. \dots	1//
7.4. Conclusion	1/9
7.4. Conclusion	105
Chapitre 8. L'évaluation de la fissuration par l'analyse limite	185
8.1. Caractérisation de la fissuration : cas de champs homogènes	
d'éléments en traction	185
8.1.1. Sur l'analyse limite et le calcul à la rupture	185
8.1.2. Cas de poutres en béton armé en flexion	187
8.2. Fissuration d'un tirant.	190
8.2.1. Fissuration localisée et endommagement diffus	190
8.2.1.1. Mise en correspondance des schémas diffus et localisé	193
8.2.2. Loi de comportement $\sigma - \varepsilon$ pour le béton dans le schéma diffus .	196
8.2.3. Application à une expérimentation sur tirants réalisée à l'EPFL	198

8.3. Champ homogène créé par la maturation du béton au sein	
d'une paroi cylindrique	202
8.3.1. Le programme et la maquette VeRCoRs	202
8.3.2. Maillage du gousset et conditions de température	205
8.3.3. Fluage, retrait et propriétés mécaniques.	207
8.3.4. Calcul mécanique	208
8.3.5. Principaux résultats et comparaisons avec les mesures in situ	209
8.3.5.1. Déformations	209
8.3.5.2. Endommagements	210
8.3.5.3. Indicateurs de fissuration	212
8.4. Conclusion	214
Chapitre 9. Exercices et compléments	215
9.1. Détermination des caractéristiques mécaniques à partir	
de courbes expérimentales	215
9.2. Modèle Mazars : chargement triaxial axisymétrique en compression	217
9.3. Endommagements local et non local	219
9.3.1. Exemple d'un barreau de béton en traction directe	219
9.3.2. Réponse du modèle local : incidence du nombre d'éléments	219
9.3.3. Modèle d'endommagement non local	221
9.3.4. Calcul objectif avec un modèle local : méthode de Hillerborg	223
9.3.5. Conclusion	227
9.4. Sur le μ modèle	228
9.4.1. Atteinte du seuil d'endommagement, critère	
de charge-décharge	228
9.4.2. Sur le facteur de triaxialité des contraintes	229
9.4.3. Réponse à un chargement triaxial axisymétrique	
en compression	230
9.4.3.1. Activation de l'endommagement de <i>crushing</i>	231
9.4.3.2. Activation de l'endommagement de « consolidation »	232
9.5. Sur le coefficient de bridage <i>R</i> dans les situations de retrait gene	236
9.6. Resolution d'une structure simple en utilisant le PPV*	239
9.6.1. Position du probleme.	239
9.6.2. Utilisation du PPV* (assemblage des contributions	220
des elements) : remarques preliminaires pour la resolution	239
9.6.2.1. Ecriture des termes du PPV*	240
9.6.2.2. Application du PPV ^{**} à la structure dans un champ	240
	240

Annexe. Prérequis en mécanique des solides et éléments finis	243
Liste des notations	275
Bibliographie	281
Index	291