Table des matières

Remerciements	1
Introduction	3
Chapitre 1. Traitement de l'information	7
1.1. Généralités	7
1.1.1. Le codage	8
1.1.2. La mémorisation	10
1.2. Les machines de traitement de l'information	11
1.2.1. La machine de Turing	11
1.2.2. L'architecture de von Neumann	12
1.2.3. La technologie CMOS	14
1.2.4. L'évolution des performances des microprocesseurs	19
1.3. L'information et l'énergie	22
1.3.1. Puissance et énergie dissipée dans les portes et circuits CMOS	22
1.3.1.1. Puissance et énergie dissipée lors des transitions	
r	23
1.3.1.2. Comment réduire l'énergie dissipée C _L V _{dd} ² ?	26
1.3.1.3. Puissance dissipée dans un circuit CMOS	29
1.4. Les technologies du futur	30
1.4.1. L'évolution du système « codage binaire-von Neumann-CMOS » .	31
1.4.1.1. Les nouveaux interrupteurs	32
1.4.1.2. Le changement de variable d'état	34
1.4.2. Les approches révolutionnaires	35

1.4.2.1. Le calcul quantique	35
1.4.2.2. Le traitement neuro-inspiré de l'information	41
1.5. Le microprocesseur et le cerveau	42
1.5.1. Paramètres physiques	44
1.5.1.1. Surface et volume	44
1.5.1.2. Nombre et taille des dispositifs élémentaires	44
1.5.1.3. Interconnexions	44
1.5.1.4. Puissance dissipée	46
1.5.2. Traitement des données	46
1.5.2.1. Le codage des informations	47
1.5.2.2. La fréquence de fonctionnement	47
1.5.2.3. Les protocoles de traitement	47
1.5.2.4. Le mode de calcul	48
1.5.3. Mémorisation des informations	48
1.6. Conclusion	49
Chapitre 2. Traitement de l'information dans le vivant	51
2.1. Le cerveau en bref	52
2.1.1. Les fonctions du cerveau.	52
2.1.2. L'anatomie du cerveau	52
2.2. Le cortex	54
2.2.1. Structure	54
2.2.2. Organisation hiérarchique du cortex	55
2.2.3. Colonnes corticales	58
2.2.4. Connexions intra- et intercolonnes	58
2.2.4.1. Connexions intracolonnes	58
2.2.4.2. Connexions intercolonnes	59
2.3. Un exemple emblématique : le cortex visuel	60
2.3.1. L'œil et la rétine.	61
2.3.1.1. Les photorécepteurs	61
2.3.1.2. Les cellules horizontales	62
2.3.1.3. Les cellules bipolaires	62
2.3.1.4. Les cellules amacrines	62
2.3.1.5. Les cellules ganglionnaires	62
2.3.2. Le nerf optique	63
2.3.3. Le cortex V1	63
2.3.4. Les aires visuelles supérieures V2, V3, V4, V5, IT	65
2.3.5. En résumé	66
2.4. Conclusion	66

Chapitre 3. Neurones et synapses	69
3.1. Généralités	69
3.1.1. Le neurone	69
3.1.2. Les synapses	71
3.2. La membrane cellulaire	74
3.2.1. La structure de la membrane	74
3.2.2. Les milieux intra- et extracellulaires	75
3.2.3. Les protéines transmembranaires	76
3.2.3.1. Les canaux ioniques	76
3.2.3.2. Les pompes ioniques	77
3.3. La membrane à l'équilibre	79
3.3.1. Le potentiel de repos V_r	83
3.3.1.1. Modèle simplifié du potentiel de repos	83
$3.3.1.2.$ Modèle complet de V_r	84
3.3.1.3. Conclusion	85
3.4. La membrane en régime dynamique	86
3.4.1. Le modèle de Hodgkin et Huxley	89
3.4.1.1. Bases mathématiques et équations du modèle	89
3.4.1.2. Courants sodiques et potassiques	90
3.4.1.3. Paramètres du modèle HH	91
3.4.1.4. Analyse dynamique : réponse à une impulsion du courant	
d'excitation	94
3.4.1.5. Excitation conduisant à une rafale de potentiels d'action	98
3.4.2. Au-delà du modèle de Hodgkin et Huxley	99
3.4.3. Les modèles HH simplifiés	100
3.4.3.1. La méthode du plan de phase	100
3.4.3.2. Le modèle de FitzHugh	101
3.4.3.3. Le modèle de Morris et Lecar	104
3.4.3.4. Les modèles phénoménologiques	107
3.4.4. Application des modèles de membrane	109
3.4.4.1. Du modèle de membrane au modèle de neurone	109
3.4.4.2. La propagation des <i>spikes</i> dans l'axone	110
3.4.4.3. La membrane comme filtre passe-bas	116
3.4.4.4. Le bruit	118
3.5. Les synapses	120
3.5.1. Les caractéristiques biologiques	120
3.5.2. La plasticité synaptique	122
3.5.2.1. Le poids synaptique	122
3.5.2.2. L'apprentissage	123
3.6. Conclusion	125