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Introduction to Suspension Rheology

1.1. Introduction

The term “suspension” is used to describe a class of fluids made up of particulate
particles (rigid particles, liquid droplets and gas bubbles) suspended in a liquid,
which may be Newtonian or non-Newtonian. When the suspending liquid (solvent) is
Newtonian, we call it a Newtonian suspension, and if this is not the case, it is
non-Newtonian suspension. Examples of suspensions include both natural and
man-made materials – for instance, ink as a suspension of pigments of dyes of
typically 5 − 10 µm in a Newtonian fluid, whole blood as a suspension of mainly
deformable red blood cells (of typically 8 − 12 µm in size) in a mildly
non-Newtonian fluid referred to as plasma, sediment as a suspension of rigid
particles of poly-dispersed shapes and sizes (0.1 µm to centimeter in sizes) in water.
At some scale levels, the effective fluid may be regarded as a continuum – for this to
make physical sense, there must be two widely separated length scales in the
problem: a is a typical dimension of a particle and L is a typical dimension of the
flow apparatus, and a ≪ L, otherwise we just simply have a collection of individual
particles suspended in a liquid. In addition, every relevant representative volume
must contain a sufficient number of particles so that an effective fluid property could
be well defined – this is a fundamental assumption in all theoretical treatments
seeking to replace the composity fluid by an effective continuum. How large a
representative volume is in practice a subjective judgment, and it represents the
resolution length scale in the problem. Some well-reviewed papers containing a lot of
useful information on suspensions are Gadala-Maria and Acrivos (1980), Metzner
(1985) and Zarraga et al. (2000).
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2 Rheology of non-spherical particle suspensions

When the suspended particles are small enough, from nm to µm in size, they are
subject to random bombardments of the solvent molecules, and their modeling
ignoring molecular motion tends to incorporate the so-called Brownian forces, a
stochastic mean of quantifying these random bombardments. The relative importance
of the Brownian forces may be characterized by a Péclet number, representing the
ratio of viscous hydrodynamic and random Brownian forces:

Pe =
ηsγ̇α

3

kBT
, [1.1]

where ηs is the solvent viscosity, γ̇ is the typical shear rate and kBT is the
Boltzmann temperature. When this number is low, Brownian forces dominate leading
to a relatively more randomized particle orientation with a larger dissipation than
when the Pe number is large, with more particles aligned with the flow. Dissipation
directly links to effective viscosity and, therefore, we expect a shear-thinning
property with the inclusion of Brownian motion. It is generally agreed Mewis and
Wagner (2012) that particles of 10 µm in size or larger are not significantly
influenced by Brownian motion. These particles are called non-colloidal particles, as
opposed to smaller colloidal particles, those smaller than about 10 µm, where the
Brownian motion must be a part of their description. The Pe number corresponding
to a = 10 µm, ηs = 1 Pa.s, γ̇ = 1 s−1, and T = 293 K is of O

(
105

)
, and this may

be taken as a delineating range between colloidal and non-colloidal particles.
Suspension of colloidal particles is referred to as colloidal suspension, and that of
non-colloidal particles is referred to as non-colloidal suspension. Excellent books and
reviews on colloidal suspensions exist (e.g. Mewis and Wagner (2012) and Morris
(2009), to which we refer the readers).

An excellent theoretical framework has been built up in understanding
non-colloidal Newtonian suspensions in the dilute limit, and this is the focus of this
chapter. We concentrate on a representative volume V = Vp ∪ Vf , where Vp is the
volume occupied by the particles and Vf is the volume occupied by the Newtonian
solvent. With a ≪ L, the relevant Reynolds number is small and the micromechanics
of particles in V follow the Stokes equations:

∇ · u = 0, −∇p+ ηs∇2u = 0, in V \Vp, [1.2]

subjected to some relevant boundary conditions on the bounding surface of V \Vp.
Since the governing equations are linear and instantaneous, the micromechanics are
also linear and instantaneous on the driving boundary data: when the flow stops, the
micromechanics cease instantaneously. As a result, the stress contributed by particles
would be linear in the velocity gradient (the driving force), and would be zeroed
instantly once the flow is stopped. The fluid would have no memory at cessation of
flow – any relaxation would have to come from the viscoelastic solvent, which is not
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modeled by [1.2]. The microstructure, as represented by the volume fraction and the
configuration of particles, evolves with the flow and, therefore, endows a memory to
the fluid at start-up. When the microstructure has reached a steady state, the
particle-contributed stress would also reach a steady state. At this point, the flow may
be stopped and the micromechanics cease instantly, freezing the particles
configuration in place. The flow may be started again in the same direction, and the
particles configuration would continue from its steady state without any further
evolving, and the particle-contributed stress would assume its previous value just
before the flow was stopped. The flow has no relaxation upon starting, and the period
of rest does not matter, because there is no microinertia. However, if the flow is
restarted in the opposite direction, then the particle microstructure, not being in the
steady-state configuration with respect to this flow, readjusts itself in the same
manner as if it restarting afresh from its initial state, and therefore endows the fluid
with a memory as before. Thus, by simply considering the nature of the
micromechanics, explanation to some experimental observations of Gadala-Maria
and Acrivos Gadala-Maria and Acrivos (1980) can be provided.

Figure 1.1. Start and stop shear flow experiment;
the torque would be proportional to the shear stress, after

Gadala-Maria and Acrivos Gadala-Maria and Acrivos (1980)

1.2. General bulk suspension properties

1.2.1. Bulk stress and stresslet

We now consider a representative volume V = Vp ∪ Vf , which is large enough to
contain many particles but small enough so that macroscopic variables hardly change
on the scale V 1/3, i.e. a ≪ V 1/3 ≪ L. The existence of such representative volume
is taken as an assumption in most works dealing with properties of an effective
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continuum (i.e. homogenization). The effective stress tensor seen from a macroscopic
level is simply the volume-averaged stress Landau and Lifshitz (1959):

⟨σ⟩ = 1

V

∫
V

σ dV =
1

V

∫
Vf

σdV +
1

V

∫
Vp

σdV, [1.3]

where the angle brackets denote a volume-averaged quantity. With a Newtonian
solvent, the stress is a hydrostatic pressure plus an extra stress proportional to the
strain rate tensor Dij = (∂ui/∂xj + ∂uj/∂xi) /2 (u is the imposed velocity vector):

σ(x) = −P I+ 2ηsD ≡ σ(f), x ∈ Vf .

Thus:

1

V

∫
Vf

σdV = −⟨P ⟩ I+ 2ηs ⟨D⟩ − 1

V

∫
Vp

σ(f)dV.

Furthermore, in the absence of microinertia and the body force, the
micromechanics must satisfy the balance of momentum (using Cartesian tensor
notation) ∂σij/∂xj = 0, which implies:

∂

∂xk
(xiσkj) = σij ,

and we find that:

1

V

∫
Vp

σij dV =
1

V

∫
Vp

∂

∂xk
(xiσkj) dV =

1

V

∫
Sp

xitj dS, [1.4]

where tj = σkjnk is the traction vector and the divergence theorem has been used
to convert the volume integral into a surface integral over the bounding surface Sp

of all the particles. In addition, with the Newtonian solvent assumption and using the
divergence theorem:

1

V

∫
Vp

σ
(f)
ij dV =

1

V

∫
Vp

[
−Pδij + ηs

(
∂ui

∂xj
+

∂uj

∂xi

)]
dV

= −P1δij +
1

V

∫
Sp

[ηs (uinj + ujni)] dS
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where P1 is the scalar pressure. The average stress is thus given by:

⟨σij⟩ = −P ′δij + 2ηs ⟨Dij⟩︸ ︷︷ ︸
solvent

+
1

V

∫
Sp

{xitj − ηs (uinj + ujni)} dS︸ ︷︷ ︸
particles

, [1.5]

consisting of a solvent contribution and a particle contribution; P ′ is just a scalar
pressure (the prime will be dropped from hereon). The particle contribution can be
decomposed into a symmetric part and an antisymmetric part. The symmetric part is,
in fact, the sum of the stresslets S(p)

ij defined by Batchelor (1970):

Sij =
1

2

∫
Sp

{xitj + xjti − 2ηs (uinj + ujni)} dS =
∑
p

S(p)
ij , [1.6]

and the antisymmetric part leads to the rotlet Batchelor (1970):

Rij =
1

2

∫
Sp

(xitj − xjti) dS =
1

2

∑
p

ϵijkT
(p)
k , [1.7]

where T
(p)
k is the torque exerted on the particle p, εijk is the alternating tensor and

the summation is over all particles in the volume V . The particle-contributed stress is,
therefore, given by:

σ
(p)
ij =

1

V

∑
p

(
S(p)
ij +

1

2
ϵijkT

(p)
k

)
. [1.8]

A more general approach for calculating stresslet for a general particle based on
singularity multipole expansion and/or Faxén theorem is detailed in Kim (1991), with
a parallel development in elasticity in Phan-Thien and Kim (1994).

1.2.2. Bulk dissipation

Sometimes, it is desirable to compute the total rate of energy dissipation. By
considering a volume V large enough to contain all the particles, the total rate of
energy dissipation in V is thus:

Φ =

∫
V

σijDij dV =

∫
V

∂

∂xj
(σijui) dV =

∑
p

∫
Sp

σijuinj dS. [1.9]
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The second equality comes from the balance of momentum, and the third equality
comes from an application of the divergence theorem, assuming that the condition
at infinity is quiescent (the bounding surface of V consists of particles’ surfaces and
surface at infinity). For a system of rigid particles, the boundary condition on the
surface of a particle p is that:

u = U(p) +Ω(p) × x, [1.10]

where U(p) and Ω(p) are the translational and rotation velocities of the particle, which
can be taken outside the integral in [1.9], and the remaining integrals can be identified
with the force F(p) and the torque T(p) imparted by the particle p to the fluid. Thus,
the total rate of energy dissipation is:

Φ =
∑
p

(
U(p) · F(p) +Ω(p) ·T(p)

)
. [1.11]

Note also that for a system of rigid particles, the integral:∫
Sp

(un+ nu) dS = 0,

since: ∫
Sp

U(p)ndS = 0,

∫
Sp

(
Ω(p) × xn+ nΩ(p) × x

)
dS = 0,

by applications of the divergence theorem.

1.3. Dilute suspension of rigid spheres

1.3.1. Stresslet

We now consider a dilute suspension of force- and torque-free monodispersed
spheres, of radius a each, in an ambient uniform flow U superimposed by shear flow
of velocity gradient L = D + W, where D is the strain rate tensor and W, the
vorticity tensor. Dilute concentration means the volume fraction:

ϕ = ν
4πa3

3
≪ 1, [1.12]

where ν is the number density of the spheres. In this case, in a representative volume
V , we expect to find only one sphere in isolation. Thus, the micromechanic problem
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consists of a single sphere in an effectively unbounded fluid – unbounded here means
far away from the particle concerned, but still not far enough to run into another
sphere. The relevant boundary conditions for this micromechanic problem are:

u (x) = U+ (D+W) · x, far from the particle, |x| → ∞, [1.13]

and

u (x) = V +w · x, on the particle’s surface, |x| = a. [1.14]

Here, (V,w) constitute a rigid body motion of the particle, with V its translational
motion and w a skew-symmetric tensor such that wij = −ϵijkΩk, where Ω is the
angular velocity of the particle. The solution to this unbounded flow problem can be
generated from Lamb’s solution Happel and Brenner (1973), or it can be synthesized
from Stokes’ singular solution Phan-Thien and Kim (1994):

u = U+ L · x+
a3

x3
(w −W) · x+

(
3a

4x
+

a3

4x3

)
(V −U)− a5

x5
D · x

+
3a

x3

(
1− a2

x2

)
(V −U) · xx− 5a3

2x5

(
1− a2

x2

)
D : xxx, [1.15]

and

P =
3

2
ηs

a

x3
(V −U) · x− 5ηs

a3

x5
D : xx. [1.16]

From this, the strain rate tensor and the stress can be calculated leading to the
traction on the surface of the sphere:

t = σ · n|x=a = −3ηs
2a

(V −U)− 3ηs
a

(w −W) · x+ 5
ηs
a
D · x. [1.17]

The force and the torque on the particle can be evaluated:

F =

∫
S

σ · n dS = −6πηsa(V −U) [1.18]

and

T =

∫
S

x× σ · ndS = −8πηsa
3(Ω− ω), [1.19]
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where ωi =
1
2ϵijkWjk is the local vorticity vector. Thus, if the particle is force-free

and torque-free, then it translates with U and spin with an angular velocity of ω.

Returning now to the particle-contributed stress, [1.8],

⟨
σ
(p)
ij

⟩
=

1

V

∑
p

Sij = νSij ,

where the stresslet is given in [1.6]. From [1.17], and noting that

∫
S

x dS = 0,

∫
S

xx dS =
4πa4

3
1,

we find

Sij =
1

2

∫
S

(xitj + xjti) dS = 5
ηs
a

∫
S

Dikxkxj dS = 5ηs

(
4πa3

3

)
Dij .

Recall that the volume fraction of particles is ϕ = 4πa3ν/3; the total effective
stress, consisted of the solvent stress and the particle-contributed stress, will now
become:

⟨σ⟩ = −P1+ 2ηs

(
1 +

5

2
ϕ

)
D, [1.20]

and consequently the dilute suspension is Newtonian, with a reduced viscosity of:

µr =
η

ηs
= 1 +

5

2
ϕ. [1.21]

This is the celebrated Einstein result Einstein (1956), who arrived at the
conclusion from the equality of the dissipation at the microscale and the macroscale
as described by an effective Newtonian viscosity. It is generally agreed that [1.21] is
quite accurate at a volume fraction ϕ < 0.02. Current research aims to
understand moderate to concentrated suspensions, for both Newtonian Foss and
Brady (2000), Zarraga et al. (2000), Pan et al. (2010), Dai et al. (2013), Lin et al.
(2014) and non-Newtonian suspensions Lyon et al. (2001), Zarraga et al. (2001),
Mall-Gleissle et al. (2002), Tanner et al. (2010)); not surprisingly, due to the complex
nature of the fluids, most of these studies are numerical modeling in nature.
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1.3.2. An exact poly-dispersed model

Although the limitation on [1.21] is quite severe, it may be used to arrive at an
exact theoretical construction for a poly-dispersed suspension at an arbitrary volume
fraction, which could provide some guidance into an experimental correlation. The
process starts by adding a small infinitesimal volume ∆ϕ of the particulate rigid phase
of size a. The effective medium is Newtonian, and its viscosity is given by:

η′ = ηs

(
1 +

5

2
∆ϕ

)
. [1.22]

To this effective Newtonian medium, another infinitesimal volume fraction of
particulate rigid phase, of considerably larger size than that of the previous step, is
added. This process continues until a finite volume fraction 0 < ϕ < 1 is built up. At
an intermediate step, denote the viscosity at volume fraction ϕ by η. To a normalized
unit volume of this, we add a ∆ϕ volume of a particulate phase, of volume fraction
∆ϕ/ (1 + ∆ϕ) . This results in an effective Newtonian fluid of viscosity:

η + dη = η

(
1 +

5

2

∆ϕ

1 + ∆ϕ

)
.

Since in a volume (1 + ∆ϕ) of the suspension, there has been a volume ϕ of
the particulate phase, now augmented by ∆ϕ, the actual volume fraction has been
increased by:

dϕ =
ϕ+∆ϕ

1 + ∆ϕ
− ϕ =

∆ϕ

1 + ∆ϕ
(1− ϕ) ,

and, therefore, we can build up the following differential model for the viscosity:

dη

η
=

5dϕ

2 (1− ϕ)

which can be integrated, subjected to η (ϕ = 0) = ηs to yield:

η

ηs
=

1

(1− ϕ)
5/2

. [1.23]

This relation was proposed and investigated by Roscoe Roscoe (1952). He noted
that the relation works well for poly-dispersed suspensions of spheres at low volume
fraction; however, as the relation allows for a maximum packing ratio of ϕ = 1, he
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recommended that, at high volume fraction, ϕ should be replaced by ϕ/ϕm, where
ϕm ≈ 0.74 for a better agreement with experimental data.

This construction is called a differential scheme in composite materials Norris
(1985), A.N. Norris and Sheng (1985). There have been several results reported by
Phan-Thien and Pham Phan-Thien and Pham (1997) for viscosity and elasticity
models of multiphase materials; the particulate phases may be rigid, droplets and
bubbles, or a combination of them. Recently, Tanner et al. Tanner et al. (2010)
reported a differential scheme for a weakly viscoelastic solvent.

1.4. Dilute suspension of spherical droplets

Small droplets (made up of an incompressible Newtonian fluid) do not suffer
significantly in their deformation and can be considered spherical as they are
transported in the flow. Their analysis is complicated by the fact that the interior flow
has to match with the exterior flow on their surfaces, and the extra parameter:

λ =
ηd
ηs

, [1.24]

the ratio of interior to exterior viscosity comes into play. Here, the solution for a
droplet is available from the literature, which can be used in a similar manner to
generate the stresslet. The readers are referred to Kim (1991) for an elegant treatment
of Faxén theorem leading to the main result that the suspension is Newtonian, with an
effective reduced viscosity of:

µr =
η

ηs
= 1 +

2 + 5λ

2 (1 + λ)
ϕ, [1.25]

which reduces to Einstein’s relation when λ → ∞ (for a rigid droplet suspension).
For a dilute suspension of gas bubbles (λ = 0),

µr =
η

ηs
= 1 + ϕ. [1.26]

Relations for poly-dispersed suspensions similar to [1.23] are also available. For
instance, a poly-dispersed suspension of droplets of viscosity ratio λ, constructed in
the manner of a differential scheme, would have an effective viscosity implicitly
given by:

ϕ = 1− µ−2/5
r

(
2 + 5λ

2µr + 5λ

)3/5

. [1.27]
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1.5. Dilute suspension of rigid spheroids

1.5.1. Jeffery’s solution and stress rule

For a dilute suspension of spheroids, a similar theory to the suspension of spheres
has been worked out by Leal and Hinch Leal and Hinch (1973) using Jeffery’s solution
Jeffery (1922). Here, if p denotes a unit vector directed along the major axis of the
spheroid, then Jeffery’s solution states that:

ṗ = W · p+
R2 − 1

R2 + 1
(D · p−D : ppp) , [1.28]

= L · p− 2

R2 + 1
D · p− R2 − 1

R2 + 1
D : ppp

where R is the aspect ratio of the particle (major to minor diameter ratio). The
evolution of p is also referred to as Jeffery’s orbit. Usually, the effects of Brownian
motion are also included as white noise perpendicular to p on the right-hand side of
[1.28], so as to preserve the unit length of p. Here, L = D + W is the velocity
gradient, where D is the strain rate and W is the vorticity tensor.

To complete the constitutive description of the suspension, a stress rule on how
to calculate the stress from the evolving microstructure (as represented by p) must
be provided. There have been many paths to accomplish this goal. In the continuum
path, we may select a relevant structure tensor (for example, pp) and postulate that the
stress is a functional of this structure tensor and a kinematic measure (for example, the
strain rate tensor). From this general assumption, we can construct continuum models
that satisfy various principles that we know all physical models must follow, and
restrict them to behave in the manner required by the physics of the micromechanics
(for example, linear and instantaneous responses). Notable contributions from this
approach are given by Hand Hand (1961) and Ericksen Ericksen (1960). We can also
build up models based on a generic type of interactions, for example the spheres model
of Goddard and Miller Goddard and Miller (1967), the transverse isotropic fiber model
of Folgar and Tucker Folgar and Tucker (1984) and the concentrated suspension model
of Phan-Thien et al. Phan-Thien et al. (1999). We will see more of this approach in this
book. These models tend to mimic certain aspects of the micromechanics provided by
the more exact and rigorous framework of dilute suspension of spheroids.

In the case of a dilute suspension of rigid spheroids, the stresslet is expressed in
terms of some elliptic integrals Kim (1991), which can be extracted asymptotically to
yield, for the particle-contributed stress Leal and Hinch (1973):

σ(p) = 2ηsϕ{AD : ⟨pppp⟩+B (D · ⟨pp⟩+ ⟨pp⟩ ·D) [1.29]

+CD+ dRF ⟨pp⟩},
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where the angular brackets denote the ensemble average with respect to the
distribution function of p if stochastic noise is used to model the Brownian
interaction in [1.28]; A, B, C and F are some shape factors, and dR is the rotational
diffusivity. If the particles are large enough so that Brownian motion can be ignored,
then the last term, as well as the angular brackets, can be omitted in [1.29]. The
asymptotic values of the shape factors have been evaluated by Leal and Hinch Leal
and Hinch (1973); they are given in Table 1.1.

1.5.2. Jeffery’s orbit

Jeffery’s equation is solved by:

p =
Q

Q
, [1.30]

where:

Q̇ = L ·Q, L = L− 2

R2 + 1
D, [1.31]

as can be verified directly, Q̇ = ṗQ+pQ̇. With p a unit vector, ṗ · p = 0, this yields:

Q̇ = p · Q̇ = Q

(
1− 2

R2 + 1

)
D : pp

= Q
R2 − 1

R2 + 1
D : pp.

When this is substituted back to ṗQ = Q̇− pQ̇, we obtain:

ṗQ =

(
L− 2

R2 + 1
D

)
Qp−Q

R2 − 1

R2 + 1
D : ppp

leading to equation [1.28]. The main advantage of this is that we only have to deal
with a linear system [1.31], instead of the nonlinearity in [1.28]. In addition, when
Brownian effects are considered, it may be less complicated by adding an
unconstrained stochastic process directly to [1.31] – stochastic process adding to
[1.28] has to be constrained so as to preserve the unit vector p.

The rheological predictions of this constitutive equation have also been considered
by Hinch and Leal Hinch and Leal (1972). In essence, the viscosity is shear thinning,



Introduction to suspension rheology 13

Asymptotic R → ∞ R = 1 + δ, δ ≪ 1 R → 0
limit (rod-like) (near-sphere) (disk-like)

A
R2

2(ln 2R− 1.5)

395

147
δ2

10

3πR
+

208

9π2
− 2

B
6 ln 2R− 11

R2

15

14
δ − 395

588
δ2 − 8

3πR
+ 1− 128

9π2

C 2
5

2

(
1− 2

7
δ +

1

3
δ2
)

8

3πR

F
3R2

ln 2R− 1/2
9δ − 12

πR

Table 1.1. Asymptotic values of the shape factors, R is the aspect ratio of the particle;
R → ∞ represents a rod-like particle (a slender prolate spheroid, R ≈ 1 represents a
near-sphere particle and R → 0 represents a disk-like particle (flat oblate spheroid)

the first normal stress difference is positive, while the second normal stress difference
is negative, but of a smaller magnitude. The precise values depend on the aspect ratio
and the strength of the Brownian motion. The limit R → ∞ corresponds to a slender
particle (prolate spheroid of a large aspect ratio R), and the rest of the discussion is
pertinent to this limit.

In a start-up of a shear flow of shear rate γ̇ (assumed positive here), given an initial
state for p0 = Q0/Q0 expressed as {Q10, Q20, Q30} , the solution to [1.31] is:

Q1 = Q10 cosωt+RQ20 sinωt =
(
Q2

10 +R2Q2
20

)1/2
cos (ωt− ϑ)

Q2 = Q20 cosωt+R−1Q10 sinωt,=
(
R−2Q2

10 +Q2
20

)1/2
sin (ωt− ϑ) [1.32]

Q3 = Q30,

and the frequency of the oscillation is:

ω =
1

2
γ̇
√
ζ(2− ζ) =

γ̇R

R2 + 1
, ϑ = tan−1 RQ20

Q10
, [1.33]

where ζ = 2/
(
R2 + 1

)
. Thus, the particles tumble along with the flow, with a period

of T = 2π/ω = 2π(R2+1)/γ̇R = O (R/γ̇), spending most of their time aligned with
the flow to within an angle O

(
R−1

)
from the flow-vorticity plane. Then, it quickly

flips through the remaining orbit in a fraction O
(
R−1

)
of the period.
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Figure 1.2. Some Jeffery’s orbits at R = 20. Each orbit has a unique orbital constant.
Orbit of Cj = 0 reduces to a point on the vorticity axis; orbit Cj = ∞ is located on the

flow-gradient plane

The projection of the orbit of Q on the flow-gradient plane is an elliptic family:

Q2
1 (t)

Q2
10 +R2Q2

20

+
R2Q2

2 (t)

Q2
10 +R2Q2

20

= 1 [1.34]

at a distance Q30 to the flow-gradient plane. This is usually referred to as Jeffery’s
orbit. The initial position and the aspect ratio of the particle completely determine the
orbit of Q and, consequently, of p. The orbital constant Cj is defined as:

Cj =

(
Q2

10 +R2Q2
20

)1/2
RQ30

=

(
Q2

1 +R2Q2
2

)1/2
RQ3

=

(
p21 +R2p22

)1/2
Rp3

. [1.35]

To avoid singular values, a modified orbital constant Cb = Cj/ (1 + Cj) ,
0 < Cb < 1, is sometimes used.

The suspension viscometric properties are recorded below:

The reduced viscosity:

⟨σ12⟩
ηsγ̇

= µr = 1 +
⟨
2Ap21p

2
2 +B

(
p21 + p22

)
+ C

⟩
ϕ, [1.36]
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the reduced first normal stress difference:

N1

ηsγ̇
= 2A

⟨
p1p2

(
p21 − p22

)⟩
ϕ, [1.37]

and the reduced second normal stress difference:

N2

ηsγ̇
= 2

⟨
p1p2

(
Ap22 +B

)⟩
ϕ. [1.38]

It has been known through simulation that ⟨p1p2⟩ is negative in shear flow, and
consequently N2 would be negative, while N1 can be either negative or positive.
Note also that all the viscometric functions are proportional to the shear rate (strictly
speaking, normal stress differences are proportional to the absolute value of the shear
rate).

In the start-up of an elongational flow with a (positive) elongational rate γ̇, the
solution for Jeffery’s orbit is:

Q1 = Q10 exp {(1− ζ)γ̇t} ,

Q2 = Q20 exp

{
−1

2
(1− ζ)γ̇t

}
, [1.39]

Q3 = Q30 exp

{
−1

2
(1− ζ)γ̇t

}
,

so that the particle is quickly aligned with the flow in a time scale O(γ̇−1). The
stress can be calculated and, in particular, the reduced elongational viscosity of the
suspension is:

N1

ηsγ̇
= µre = 3 + (2A+ 2B + C)ϕ ≈ ϕR2

ln 2R− 1.5
. [1.40]

For a dilute suspension of rod-like particle:

µre ≈ 3 +
ϕR2

ln 2R− 1.5
, [1.41]

suggesting an O
(
R2

)
dependence of the elongational viscosity on the aspect ratio.

However, the dilute assumption means that the volume fraction is low enough so
that a particle can rotate freely without any hindrance from its nearby neighbors. The
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distance ∆ between any two particles must therefore satisfy l < ∆, where l is the
length of a particle of diameter d, so that a volume of l3 contains only one particle.
The volume fraction, therefore, satisfies:

ϕ ∼ d2l

∆3
, ϕR2 =

l3

∆3
< 1.

Thus, the reduced elongational viscosity is only O(1) in the dilute limit, and not
O(R2). Jeffery’s solution may be used for a rod-like particle when the aspect ratio R
has to be replaced by an effective aspect ratio, Re ≈ 0.7R Cox (1971).

Thus, the reduced elongational viscosity is only O(1) in the dilute limit, and not
O(R2). Jeffery’s solution may be used for a rod-like particle when the aspect ratio R
has to be replaced by an effective aspect ratio, Re ≈ 0.7R Cox (1971).
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