Table des matières

Avant-propos	1
Chapitre 1. Optimisation de la conception par la fiabilité Philippe POUGNET et Abdelkhalak EL HAMI	5
1.1. Introduction.	6
1.2. La conception par la fiabilité	8
1.2.1. Evaluation des risques par la fiabilité prévisionnelle	10
1.2.2. Identification des éléments critiques pour la fiabilité du système.	12
1.2.3. Détermination de la distribution des contraintes provoquant	
les défaillances	15
1.2.4. Détermination du niveau de criticité des contraintes	17
1.2.5. Provoquer les défaillances et les analyser.	21
1.2.5.1. Essais hautement accélérés	23
1.2.5.2. Essais accélérés	24
1.2.5.3. Analyse de la défaillance	24
1.2.6. Modélisation des défaillances.	25
1.2.7. Optimisation de la conception	27
1.3. Conclusion	28
1.4. Bibliographie	29
Chapitre 2. Caractérisation non destructive par ellipsométrie	04
Spectroscopique des interfaces de dispositifs mecatroniques Pierre Richard DAHOO, Malika KHETTAB, Jorge LINARES et Philippe POUGNET	31
2.1. Introduction	32

2.2. Relation entre les paramètres ellipsométriques
et les caractéristiques optiques d'un échantillon
2.3. Ellipsomètres à élément tournant ou à modulateur de phase
2.4. Relation entre les paramètres ellipsométriques et l'intensité
du signal détectée
2.5. Analyse des données expérimentales
2.6. Le modèle structural à empilement
2.7. Le modèle optique
2.8. Application de la technique d'ellipsométrie
2.8.1. Couche mince à base de nanograins d'argent frittés
sur un substrat de cuivre
2.8.2. Analyse des spectres ellipsométriques de polymères
sur différents substrats
2.8.3. Analyse et comparaison après contrainte
2.8.4. Analyse physique de l'interaction lumière-matière en termes
d'énergie de bande interdite
2.8.4.1. Analyse de l'interface B1/Quartz
2.8.4.2. Analyse de l'interface B1/Aluminium 57
2.9. Conclusion
2.10. Bibliographie

Chapitre 3. Méthode de caractérisation de l'environnement électromagnétique dans des circuits hyperfréquences encapsulés dans des cavités métalliques	61
3.1. Introduction.	61
3.2. Théorie des cavités métalliques	62
3.2.1. Définition	62
3.2.2. Champ électromagnétique dans une cavité parallélépipédique	62
3.2.3. Fréquences de résonance.	63
3.3. Effet des cavités métalliques sur les émissions rayonnées	
des circuits hyperfréquences	64
3.3.1. Circuit d'étude : ligne microruban 50 ohms	65
3.3.1.1. Effet sur les paramètres S	65
3.3.1.2. Effet sur les cartographies du champ magnétique	67
3.4. Estimation du champ électromagnétique rayonné en présence	
de la cavité à partir du champ électromagnétique rayonné sans cavité	69
3.4.1. Principe de la méthode	69
3.4.2. Modèle d'émission rayonnée	70
3.4.2.1. Topographie du modèle	71

3.4.2.2. Extraction des paramètres.	72
3.4.2.3. Obtention du vecteur initial des paramètres du modèle	72
3.4.2.4. Optimisation des paramètres	73
3.4.2.5. Modèle du cas testé	74
3.4.3. Résultats et discussions	74
3.4.4. Résultats et analyses	75
3.5. Conclusion	78
3.6. Bibliographie	79
Chapitre 4. Mesure des déformations et des déplacements	
statiques et vibratoires par des méthodes plein champ	81
4.1. Introduction	82
4.2. Interférométrie speckle	84
4.2.1. I fincipe de la mésure des enamps de déplacements	8/
4 2 1 1 Interférométrie speckle à intégration temporelle	86 86
4.2.1.2. Mesure des déformations statiques d'origine thermique	00
ou mécanique	89
4.2.2. Description du banc de mesure par interférométrie speckle	91
4.2.3. Exemples de mesures des champs de déplacements statiques	92
4.2.3.1. L'effet du vissage et de l'ordre de vissage des vis assurant	
la fixation dans leur support des cartes électroniques embarquées	
sur les déformations des cartes ou de leurs supports	93
4.2.3.2. Deux cartes contrôleur moteur équipées (mesure	
de déformées suite aux sollicitations thermomécaniques	
produites par convection)	95
4.2.3.3. Mesure des déformations avec dissipation thermique	
sur un boîtier avec des éléments chauffants (résistances)	
qui simulent les transistors de puissance	99
4.2.4. Exemples de mesures des champs de déplacements vibratoires.	100
4.2.5. Exemples de mesures dynamiques	106
4.3. Moiré de projection	107
4.3.1. Principes de la mesure des champs de déplacements par moiré	
de projection.	108
4.3.2. Description du banc de mesure par moiré de projection	109
4.3.3. Exemples de mesures des champs de déplacements par moiré	
de projection.	110
4.4. Projection de lumière structurée	11(
4.4.1. Principes de la mesure de forme par lumière structurée	11

4.4.2. Description du banc de mesure par lumière structurée	113
4.4.3. Exemples de mesures des formes 3D par projection	
de lumière structurée	114
4.5. Conclusion	115
4.6. Bibliographie	116

Chapitre 5. Caractérisations de transistors de commutation aux contraintes de surtension électrique	117
I direk MARTIN, Eddović EACHEZE, Aldin KAMDEL CI I imppe Descamps	
5.1. Introduction	117
5.2. Banc de robustesse aux contraintes électriques ESD/EOV	118
5.2.1. Description du banc TPG	118
5.2.2. Contraintes appliquées sur le transistor	119
5.2.3. Procédure de test	121
5.2.4. Capacités du TPG.	122
5.3. Résultats de simulation	122
5.3.1. Phénomènes mis en évidence	122
5.3.2. Influence des phénomènes parasites	123
5.4. Dispositif expérimental	126
5.4.1. Résultats de mesures et analyse des phénomènes observés	127
5.4.1.1. Mesures V _{BR} des transistors IR CR	127
5.4.1.2. Mesures V_{BR} des transistors IR CR, BUK CX	
et NP110 CE	127
5.4.1.3. Interprétation des mesures $I_{DS}(V_{DS})$ et $I_{DS}(V_{GS})$.	128
5.5. Conclusion	135

135

137

6.1. Introduction	137
6.2. La technologie GaN	138
6.3. Contrainte électromagnétique rayonnée	139
6.3.1. Présentation du banc de contrainte électromagnétique	140
6.3.2. Résultats et analyses	141
6.4. Contrainte continue RF CW	145
6.4.1. Présentation du banc de contrainte continue RF CW	145
6.4.2. Résultats et analyses	145

6.5. Contrainte thermique	147
6.5.1. Présentation du banc de contrainte thermique	147
6.5.2. Résultats et analyses	148
6.5.2.1. Etude à la température T = 90 °C $\dots \dots \dots \dots \dots$	148
6.5.2.2. Etude à la température T = -40 °C	149
6.6. Contraintes simultanées : RF CW + EM et électrique + EM	152
6.6.1. Effet de l'application simultanée de contraintes	
électromagnétique et RF	152
6.6.2. Effet de l'application simultanée de contraintes	
électromagnétique et continue DC	154
6.7. Conclusion	156
6.8. Bibliographie	156

Chapitre 7. Mesure de la température interne

des composants électroniques	159
Eric JOUBERT, Olivier LATRY, Pascal DHERBECOURT, Maxime FONTAINE,	
Christian GAUTIER, Hubert POLAERT et Philippe EUDELINE	

7.1. Introduction	59
7.2. Dispositif expérimental	60
7.3. Résultats des mesures 10	62
7.3.1. Mesures IR	62
7.3.2. Mesures électriques	65
7.3.2.1. Calibration de la diode	65
7.3.2.2. Mesures	65
7.3.3. Mesures optiques	68
7.3.3.1. Principe	68
7.3.3.2. Résultats préliminaires 1'	71
7.3.4. Comparaison entre les méthodes de mesures infrarouges	
et électriques	73
7.4. Conclusion	76
7.5. Bibliographie	77

Chapitre 8. Fiabilité prévisionnelle des systèmes électroniquesembarqués : référentiel FIDES.179Philippe POUGNET, Franck BAYLE, Hichame MAANANE

et Pierre Richard DAHOO

8.1. Introduction.	180
8.2. Présentation du guide FIDES	181
8.2.1. Modélisation globale	181

8.2.2. Modèle générique	181
8.2.3. Bases mathématiques	182
8.2.4. Justification du taux de défaillance/intensité constant	183
8.2.5. Estimation de λ_{o}	184
8.2.6. Facteurs d'accélération	185
8.2.7. Profil de vie	186
8.2.8. Expérimentation au niveau des cartes électroniques	188
8.2.9. Expérimentation au niveau des équipements	189
8.2.10. Expérimentation au niveau « famille de composants »	190
8.2.11. Exemple des transistors de puissance « MOSFET »	192
8.2.11.1. Choix de la loi de la physique de la défaillance	192
8.2.11.2. Fiche de traçabilité	192
8.3. Calcul FIDES sur système mécatronique automobile	193
8.3.1. Objectifs du calcul FIDES	194
8.3.2. Méthodologie	195
8.3.3. Profil de vie	195
8.3.3.1. Saisie des données	195
8.3.4. Carte SMI	199
8.3.4.1. Résultats par type de composants	199
8.3.4.2. Carte FR4	200
8.3.4.3. Fils connexions entre les cartes SMI et FR4	201
8.3.5. Taux de défaillance du convertisseur DC/DC	201
8.3.6. Effet de l'amplitude des cycles thermiques sur la durée de vie	201
8.3.7. Comparaison avec les résultats du référentiel UTE C 80-810	201
8.4. Conclusion	202
8.5. Bibliographie	203

Chapitre 9. Optimisation multiobjectif

9.1. Introduction. 20 9.2. Algorithme de recherche en marche arrière 20 9.2.1. Initialisation 20 9.2.2. Sélection I 20 9.2.2.1. Opérateur de mutation 20 9.2.2.2. Opérateur de croisement 20 9.2.3. Sélection II 20 9.2.3. Problème d'optimisation multiobjectif. 20)5
9.2. Algorithme de recherche en marche arrière 20 9.2.1. Initialisation 20 9.2.2. Sélection I 20 9.2.2.1. Opérateur de mutation 20 9.2.2.2. Opérateur de croisement 20 9.2.3. Sélection II 20 9.2.3. Problème d'optimisation multiobjectif. 20	05
9.2.1. Initialisation 20 9.2.2. Sélection I 20 9.2.2.1. Opérateur de mutation 20 9.2.2.2. Opérateur de croisement 20 9.2.3. Sélection II 20 9.3. Problème d'optimisation multiobjectif. 20	07
9.2.2. Sélection I 20 9.2.2.1. Opérateur de mutation 20 9.2.2.2. Opérateur de croisement 20 9.2.3. Sélection II 20 9.3. Problème d'optimisation multiobjectif 20	08
9.2.2.1. Opérateur de mutation 20 9.2.2.2. Opérateur de croisement 20 9.2.3. Sélection II 20 9.3. Problème d'optimisation multiobjectif. 20	08
9.2.2.2. Opérateur de croisement 20 9.2.3. Sélection II 20 9.3. Problème d'optimisation multiobjectif. 20	09
9.2.3. Sélection II. 20 9.3. Problème d'optimisation multiobjectif. 2	09
9.3. Problème d'optimisation multiobjectif	09
	10
9.4. Algorithme proposé	11
9.4.1. Tri rapide non dominé	12

9.4.2. Distance du <i>crowding</i>	212
9.4.3. Validation numérique : tests de benchmark.	214
9.5. Application aux problèmes d'interaction fluide-structure (IFS)	217
9.5.1. Enoncé du problème IFS	217
9.5.1.1. Equations basiques de l'IFS	217
9.5.1.2. Couplage fluide-structure	218
9.5.2. Processus de l'optimisation IFS	220
9.5.3. Application à l'aile Onera M6	221
9.5.3.1. Position du problème	222
9.5.3.2. Modélisation numérique de l'IFS	223
9.5.3.3. Analyse aérodynamique de l'aile Onera M6	224
9.5.3.4. Analyse aéroélastique de l'aile Onera M6	227
9.5.3.5. Analyse modale précontrainte	228
9.5.3.6. Optimisation	228
9.6. Conclusion	230
9.7. Bibliographie	231
Liste des auteurs.	235
Index	237
Sommaire de Les systèmes mécatroniques embarqués 2	241