Table des matières

Avant-propos	1
Chapitre 1. Transistors à effet tunnel basés sur des semi-conducteurs III-V	5
1.1. Introduction. 1.2. Expérimentations 1.3. Simulation des TFET à base de III-V 1.3.1. Le modèle k.p dans le formalisme NEGF 1.4. Mécanismes de dégradation des SS. 1.4.1. Intégrité électrostatique 1.4.2. Effet tunnel assisté par trappe 1.4.3. Rugosité de la surface 1.5. Stratégies d'amélioration du courant de l'état ON 1.5.1. Contrainte 1.5.2. Hétérostructures de type III 1.5.3. Classification de la fraction molaire du matériau de base 1.6. Conclusion 1.7. Bibliographie	5 7 10 11 14 14 17 20 22 22 25 28 30 31
Chapitre 2. Transistors à effet de champ basés sur des matériaux 2D : perspective de modélisation	37
2.1. Introduction	37 37

2.1.2. Le potentiel des matériaux 2D	42
2.2. Approche de modélisation	46
2.2.1. Exigences et état de l'art	46
2.2.2. Fonctions de Wannier maximalement localisées (MLWF)	48
2.2.3. Vers des simulations <i>ab initio</i> de transport quantique	50
2.3. Analyse des performances des dispositifs 2D	53
2.3.1. Le MoS ₂ et les autres TMD	53
2.3.2. Nouveaux matériaux 2D	56
2.4. Défis et opportunités	64
2.4.1. Contacts électriques entre métaux et monocouches 2D	64
2.4.2. Facteurs limitant la mobilité en 2D	66
2.4.3. Oxydes 2D	68
2.4.4. Concepts de logique avancée	69
2.5. Conclusion	71
2.6. Remerciements	71
2.7. Bibliographie	71
Chapitre 3. Transistors à effet de champ à capacité négative Wei CAO et Kaustav BANERJEE	83
3.1. Introduction	83
	83 84
3.2. L'essor des NC-FET	88 88
3.3. Comprendre les NC-FET à partir de zéro	88
3.3.2. Formulation de la pente de commutation	00
d'un NC-FET générique	90
3.4. Défis fondamentaux des NC-FET	92
3.4.1. Impact du NC sur les performances des FET.	92
3.4.2. Impact du l'AC sur les performances des l'ET	95
3.5. Conception et optimisation de NC-FET	96
3.5.1. Conception de NC-FET dans la limite de la capacité quantique .	96
3.5.2. Le rôle de la non-linéarité du NC	98
3.5.3. IMG: emprunt de charges parasites pour la polarisation	70
en NC	100
3.5.4. Un rôle pratique des NC pour les FET : économiseur de perte	100
de tension	102
3.6. Annexe : une règle pour l'interprétation du SS subthermique	
basée sur la dynamique de polarisation	106
3.7. Bibliographie	107

napitre 4. Z2FET à zéro ionisation par impact et zéro pente
us le seuil
ris Lacord
4.1. Introduction
4.2. Fonctionnement en régime permanent du Z2FET
4.2.1. Démonstration de la commutation abrupte du Z2FET
4.2.2. Caractéristique courant-tension « en forme de S » du Z2FET
4.2.3. Description détaillée du Z2FET
4.3. Modèle analytique et compact du Z2FET en régime permanent
4.3.1. Modèle analytique de courant de drain en régime permanent
du Z2FET
4.3.2. Évaluation analytique de la tension de commutation du Z2FET
4.3.3. Modèle compact Z2FET
4.4. Démonstration expérimentale Z2FET
4.4.1. Fabrication du Z2FET
4.4.2. Caractéristique de commutation du Z2FET sous balayage
de la tension de grille
4.4.3. Caractéristique de commutation du Z2FET sous balayage
de la tension de drain
4.5. Z2FET comme 1T-DRAM
4.5.1. Description du fonctionnement de la cellule 1T-DRAM Z2FET
4.5.2. Preuve expérimentale du fonctionnement
de la cellule 1T-DRAM Z2FET
4.6. Optimisation de la structure Z2FET
4.6.1. Z2FET DGP
4.6.2. Z3FET
4.7. Applications amont de Z2FET
4.7.1. Z2FET comme protection ESD
4.7.2. Z2FET comme commutateur logique (logic switch)
4.7.3. Z2FET comme photodétecteur
4.8. Conclusion
4.9. Bibliographie
napitre 5. La spintronique bidimensionnelle
atthieu JAMET, Diogo C. VAZ, Juan F. SIERRA, Josef SVĚTLÍK,
rgio O. VALENZUELA, Bruno DLUBAK, Pierre SENEOR,
édéric Bonell et Thomas Guillet
5.1. Introduction
5.2. Spintronique dans les gaz de Rashba 2D aux surfaces/interfaces
d'oxydes

5.2.1. Conductivité 2D émergente aux interfaces d'oxydes	157
5.2.2. Interactions spin-orbite de Rashba	159
5.2.3. Conversion du courant de spin en courant de charge	
dans les 2DEG d'oxyde	160
5.2.4. Applications et perspectives des dispositifs	163
5.3. Spintronique dans les dispositifs latéraux à spin	
dans les matériaux 2D	166
5.3.1. Introduction	166
5.3.2. Injection et détection de spin	168
5.3.3. Précession de spin	169
5.3.4. Mécanismes de relaxation du spin	170
5.3.5. Transport de spin dans les hétérostructures de van der Waals	172
5.4. Matériaux 2D dans les jonctions tunnel magnétiques	175
5.4.1. Introduction	175
5.4.2. Premiers pas vers l'intégration de matériaux 2D	
dans les jonctions tunnel magnétiques	177
5.4.3. Dispositifs exfoliés et transférés : premiers résultats	179
5.4.4. Dispositifs exfoliés et transférés : amélioration	
par la définition <i>in situ</i>	181
5.4.5. Croissance directe par CVD : l'essor de la grande échelle	
et de la haute qualité	182
5.4.6. Preuves expérimentales du filtrage de spin basé sur le 2D	
dans les MTJ hybrides en 2D	183
5.4.7. Conclusion	186
5.5. Les isolants topologiques en spintronique	186
5.5.1. Introduction	186
5.5.2. Verrouillage spin-moment et interconversion spin-charge	188
5.5.3. Matériaux, interfaces et méthodes de fabrication	191
5.5.4. Mesures de l'interconversion spin-charge	193
5.5.5. Conclusion	196
5.6. Bibliographie	197
Chapitre 6. Valléetronique dans les matériaux 2D	215
Steven A. VITALE	
6.1. Introduction	215
6.2. Physique de l'exciton et de la vallée	216
6.2.1. Introduction aux vallées et aux excitons.	217
6.2.2. Physique de la vallée	220
6.2.3. Couplage spin-orbite et excitons exotiques	227
	/

6.3. Durée de vie, transport et exploitation de la vallée. 6.3.1. Durée de vie des vallées. 6.3.2. Transport en vallée. 6.3.3. Opérations en vallée. 6.4. Dispositifs et matériaux valléetroniques. 6.5. Informatique valléetronique 6.5.1. Calcul classique : puissance et performance. 6.5.2. Informatique classique : architecture. 6.5.3. Informatique quantique. 6.5.4. Perspectives. 6.6. Bibliographie.	229 229 235 236 240 245 246 248 250 251 252
Chapitre 7. Électronique moléculaire : transport d'électrons, de spins et de chaleur	259
7.1. Introduction	259 260
aux fondamentaux	262 264 270
dans les jonctions moléculaires	271 275 277 282
7.10. Conclusion	286 287
Chapitre 8. Électronique quantique supraconductrice	301
8.1. Introduction	301 301
8.1.2. La jonction Josephson	303
supraconducteurs (SQUID)	309
8.1.4. L'émergence de l'électronique supraconductrice	313
8.2. L'électronique passive supraconductrice	314
8.2.1. L'impédance de surface des supraconducteurs	314
8.2.2. Les guides d'ondes et lignes de transmission supraconducteurs.	316

8.2.3. Les antennes supraconductrices	320
8.2.4. Les filtres supraconducteurs	321
8.2.5. Les commutateurs micro-ondes	321
8.3. Les détecteurs supraconducteurs	322
8.3.1. Les capteurs <i>transition-edge</i> (TES)	323
8.3.2. Les détecteurs de photons uniques à nanofils supraconducteurs	
(SNSPD)	324
8.3.3. Les détecteurs à inductance cinétique (KID)	325
8.4. L'électronique numérique supraconductrice	326
8.4.1. La logique à quantum à flux unique (SFQ)	328
8.4.2. La logique adiabatique paramétrique à quantum de flux	
(AQFP)	342
8.4.3. Vers l'informatique supraconductrice	344
8.4.4. L'informatique neuromorphique quantique en mémoire	347
8.4.5. Outils de conception assistée par ordinateur (CAO)	350
8.5. L'informatique quantique supraconductrice	351
8.5.1. Approche épistémologique	351
8.5.2. Les bits quantiques supraconducteurs (qubits)	363
8.5.3. Sources de décohérence dans les qubits	367
8.5.4. Système d'interface de qubits à base de jonctions Josephson	368
8.5.5. La cavité à qubit	371
8.6. Le refroidissement cryogénique	373
8.7. Bibliographie	376
0.7. Biologiaphic	370
Chapitre 9. Les puces photoniques	395
Frank Brückerhoff-Plückelmann, Johannes Feldmann	
et Wolfram PERNICE	
9.1. Introduction	395
9.2. Les circuits nanophotoniques	396
9.2.1. Les guides d'ondes diélectriques	397
9.2.2. Les dispositifs photoniques de base	398
9.2.2. Les dispositifs photoniques de base	400
	400
9.3.1. Dynamique de commutation des matériaux à changement	400
de phase	400
9.3.2. Matériaux à changement de phase couplés à un guide d'ondes	401
9.4. Noyau tensoriel photonique	403
9.4.1. Opérations de multiplication et d'accumulation optiques	404
9.4.2. Conception du noyau tenseur photonique.	406
9.4.3. Calcul parallèle par multiplexage en longueur d'onde	407
9.4.4. Prototype de noyau tensoriel photonique	409

9.5. Le réseau de neurones artificiels optiques	411
9.5.1. Les réseaux neuronaux artificiels	411
9.5.2. L'unité d'activation non linéaire	413
9.5.3. Le prototype d'un neurone optique	415
9.6. Enjeux et perspectives	417
9.7. Bibliographie	418
Liste des auteurs	423
Index	427