Table des matières

Avant-propos	1
Partie 1. Contact et frottement.	5
Chapitre 1. Méthodes de lagrangien et de Nitsche pour le contact	7
Franz CHOULY, Patrick HILD et Yves RENARD	'
1.1. Introduction	7
1.2. Contact avec frottement de deux corps élastiques	
en petites déformations.	8
1.2.1. Le contact de deux corps élastiques	8
1.2.2. La forme en inéquation faible classique.	11
1.2.3. Le principe de dualité et la forme faible avec multiplicateurs	12
1.2.4. Le lagrangien augmenté proximal : principe et utilisation	14
1.3. Approximation par éléments finis en petites déformations	16
1.3.1. État de l'art, méthodes avec multiplicateurs	18
1.3.2. Absence de condition inf-sup et méthodes stabilisées	20
1.3.3. La méthode de Nitsche vue comme modèle limite	
des méthodes stabilisées	21
1.3.4. Lien entre Nitsche et lagrangien augmenté proximal	23
1.3.5. Lien entre Nitsche et pénalité	24
1.4. Approximation par éléments finis en grandes déformations	25
1.4.1. Sur l'appariement de contact et la fonction gap	27
1.4.2. Formulation des conditions de contact et de frottement	30
1.4.3. Lagrangien augmenté et pénalisation	32

1.4.4. Méthode de Nitsche	38
1.4.5. Sur la valeur du paramètre γ	40
1.4.6. Tests numériques	41
1.5. Remerciements	46
1.6. Bibliographie	47

53

Chapitre 2. Calcul intensif en mécanique multicontact : de l'élastostatique à la dynamique granulaire

Pierre ALART

2.1. Introduction
2.2. Multicontact en élastostatique
2.2.1. Cadre des développements 55
2.2.2. Préconditionnements de solveurs parallèles
2.2.3. Décomposition de domaine : solveur Newton-Schur
2.3. Non-régularité diffuse dans les structures discrètes : tenségrité 64
2.3.1. Motivation
2.3.2. Décomposition de domaine : solveur LATIN micro-macro 65
2.4. Dynamique granulaire
2.4.1. Formulation en vitesse-impulsion
2.4.2. Solveurs parallélisés et parallélisables
2.4.3. Décomposition de domaine : solveur FETI-NLGS
2.5. Conclusion
2.6. Bibliographie

Chapitre 3. Méthodes numériques en contact micromécanique . . 87

Vladislav A. YASTREBOV	
3.1. Introduction	87
3.1.1. Plan	88
3.2. Problème micromécanique du contact	88
3.2.1. Géométrie des surfaces : description mathématique	88
3.2.2. Géométrie des surfaces : exemples et discussions	91
3.2.3. Modèles de rugosité	93
3.2.4. Formalisation du contact.	94
3.2.5. Lois de frottement.	96
3.3. Méthode des éléments finis	98
3.3.1. Convergence, paramètres et pas de chargement	100
3.3.2. Convergence des problèmes du frottement	100

3.3.3. Convergence quadratique	103
3.3.4. Maillage et temps de calcul	103
3.3.5. Contrainte de contact.	104
3.3.6. Régularité des surfaces.	106
3.4. Application I : étude d'une aspérité isolée	107
3.4.1. Aspérité élastique	107
3.4.2. Aspérité élastoplastique	111
3.5. Application II : contact des surfaces rugueuses	118
3.6. Conclusion	122
3.7. Bibliographie	123
Partie 2. Endommagement et fissuration	147
Chanitre 4. Méthodes numériques pour la runture ductile	140
Jacques BESSON	140
4.1. Introduction.	149
4.2. Mécanismes physiques de la rupture ductile	150
4.3. Quelques modèles de rupture ductile	151
4.3.1. Le modèle de Rice et Tracey et critères de rupture	151
4.3.2. Le modèle de Gurson-Tvergaard-Needleman	152
4.3.3. Autres modèles	155
4.4. Réaliser des simulations de la rupture ductile dans un code	
par éléments finis	156
4.4.1. Paramètres des calculs	156
4.4.2. Contrôle des pressions	157
4.4.3. Application du critère de Rice et Tracey	158
4.4.4. Application du modèle GTN	159
4.4.5. Solution pragmatique.	162
4.5. Origine de la localisation.	163
4.6. Méthodes de régularisation	165
4.6.1. Méthodes intégrales	165
4.6.2. Méthodes dites à gradient explicite ou implicite	166
4.6.3. Modèles micromorphes	170
4.6.4. Modèles à énergies enrichies	172
4.6.5. Exemple	174
4.7. Conclusion	177
4.8. Bibliographie	180

Chapitre 5. Modélisation de la rupture quasi fragile	189
 5.1. Quelles approches pour prédire la rupture quasi fragile ? 5.2. Matériaux à longueurs internes	189 192 192 195 197 199 203 204 208 217 221 225 228 229 232 236 241 242 252 262
Chapitre 6. Méthodes des éléments finis étendus (XFEM) et des <i>level sets</i> épaisses (TLS)	275
6.1. Introduction. 6.1. Introduction. 6.2. Catégorisation des approches pour la fissuration. 6.1. La méthode des éléments finis étendus (XFEM) pour la fissuration	275 276
des milieux non adoucissants	279
pour la fissuration des milieux adoucissants 6.4.1. Modèles TLS V1 et V2	285 289

6.4.2. Lien avec le modèle de Griffith et le modèle cohésif	293
6.4.3. TLS : aspects de l'implémentation	293
6.5. Exemples de simulation XFEM-TLS	297
6.5.1. Rupture d'une craie par torsion	297
6.5.2. Multifissuration d'un bloc rempli de cavités	298
6.5.3. Flexion trois-points d'une poutre et fissure cohésive	300
6.6. Conclusion	301
6.7. Bibliographie	302
Chapitre 7. Transition endommagement-fissure.	309
7.1. Introduction	309
7.1.1. Les modèles d'endommagement continus et leurs limites	309
7.1.2. Modéliser une discontinuité	311
7.1.3. Définition d'une stratégie de transition endommagement-fissure.	319
7.1.4. Objectif et cadre de l'étude	321
7.2. Localiser une discontinuité	321
7.2.1. Formulation d'un critère d'orientation.	322
7.2.2. Du critère d'orientation à la surface de fissure	328
7.2.3. Méthodes basiques d'évaluation pour plus de régularité	332
7.2.4. Méthodes avancées d'évaluation assurant plus de régularité	334
7.2.5. Construction d'une surface discrétisée continue en 3D	347
7.3. Insérer une discontinuité	355
7.3.1. Objectifs et liens avec le critère d'orientation	355
7.3.2. Les différents critères d'insertion	356
7.3.3. Points durs associés à la détermination du front	360
7.3.4. Perspectives : renforcer le lien avec la physique	363
7.4. Reprendre le calcul après insertion d'une discontinuité	363
7.4.1. Les problèmes	363
7.4.2. Transfert de champ	364
7.4.3. Rééquilibrage	370
7.5. Conclusion	372
7.6. Bibliographie	373
Liste des auteurs.	383
Index	385