Table des matières

Préface	1
Avant-propos	5
Christian Gogu	
Partie 1. Modélisation, quantification et propagation	
d'incertitudes	9
Chapitre 1. Modélisation des incertitudes	11
1.1. Introduction	11
et incertitudes aléatoires	14 18
1.3. Théorie des probabilités	18
1.3.1. Cadre théorique	10
d'incertitudes aléatoires	21
1.3.3. Approche probabiliste pour la modélisation	
d'incertitudes épistémiques	24
1.4. Théorie des boîtes de probabilité (<i>p-boxes</i>)	29
1.5. Analyse par intervalles	32
1.6. Théorie des ensembles flous	33
1.7. Théorie des possibilités	35
1.7.1. Cadre théorique	35

1.7.2. Comparaison entre théorie des probabilités et théorie des possibilités	38
1.7.3. Règles de combinaison de distributions de possibilités	30 42
1.8. Théorie de l'évidence	43
	43
1.8.1. Cadre théorique	43 47
1.8.2. Règles de combinaison de fonctions de masse de croyance	
1.9. Bilan des modélisations d'incertitudes épistémiques	48
1.10. Bibliographie	49
Chapitre 2. Caractérisation et modélisation probabiliste	
de milieux hétérogènes	51
François WILLOT	
2.1. Introduction.	51
2.2. Caractérisation probabiliste des microstructures	53
2.2.1. Ensembles aléatoires	53
2.2.2. Covariance	55
2.2.3. Granulométrie	58
2.2.4. Fonctionnelles de Minkowski	59
2.2.5. Stéréologie	61
2.2.6. Érosion linéaire	61
2.2.7. Volume élémentaire représentatif	62
2.3. Processus de points	63
2.3.1. Processus de points de Poisson homogène	64
2.3.2. Processus de points de Poisson inhomogène	66
2.4. Modèles booléens	67
2.4.1. Définition et capacité de Choquet	67
2.4.2. Propriétés	69
2.4.3. Covariance	70
2.4.4. Autres caractéristiques	71
2.5. Modèles RSA	74
2.6. Partitions aléatoires	75
2.6.1. Partition de Voronoï	76
2.6.2. Partition de Johnson-Mehl	77
2.6.3. Partition de Laguerre	77
2.6.4. Partitions aléatoires de Poisson	78
2.6.5. Modèle de feuilles mortes	79
2.6.6. Modèles de partitions aléatoires généralisées	80
2.7. Champs gaussiens	81
2.8. Conclusion	84
2.9. Remerciements	85
2.10 Bibliographie	85

Chapitre 3. Propagation d'incertitudes à l'échelle de structures de génie civil vieillissantes	91
David Bouhjiti, Julien Baroth et Frédéric Dufour	
3.1. Introduction	91
3.2. Position du problème	93
3.2.1. Formulation probabiliste	93
3.2.2. Fonction de transfert thermo-hydro-mécanique-fuite	94
3.2.3. Problème THM-F probabiliste résultant	95
3.3. Modélisation par champ aléatoire de propriétés matérielles	96
3.3.1. Champs aléatoires	96
3.3.2. Méthodes de génération de champs aléatoires discrétisés	96
3.3.3. Champs aléatoires et autocorrélations	99
3.3.4. Application : contribution à la modélisation de la fissuration	
d'un ouvrage en béton armé par des champs aléatoires autocorrélés	100
3.4. Modélisation de la propagation d'incertitudes par les méthodes	
de surface de réponse	106
3.4.1. Stratégies de couplage probabiliste	106
3.4.2. Méthode du chaos polynomial	109
3.5. Conclusion	115
3.6. Bibliographie	116
Chapitre 4. Réduction d'incertitudes en analyse multidisciplinaire basée sur une étude de sensibilité par chaos polynomial Sylvain Dubreuil, Nathalie Bartoli, Christian Gogu et Thierry Lefebure	121
4.1. Introduction	121
4.2. Analyse multidisciplinaire avec incertitude de modèle	123
4.2.1. Formalisme	123
4.2.2. Résolution de la MDA aléatoire4.2.3. Approximation de la quantité d'intérêt par chaos polynomial	127
creux	130
4.3. Analyse de sensibilité et réduction d'incertitudes	132
4.3.1. Introduction	132
4.3.2. Indices de Sobol' approchés par chaos polynomial	134
4.4. Application à un cas test aéroélastique	135
4.4.1. Présentation	135
4.4.2. Construction des métamodèles disciplinaires	138
4.4.3. Analyse de sensibilité et réduction d'incertitudes	141
4.5. Conclusion	148
4.6. Bibliographie	148

Partie 2. Prise en compte des incertitudes : analyse de fiabilité et optimisation sous incertitudes	151
Chapitre 5. Estimation de probabilité d'événements rares Jean-Marc Bourinet	153
5.1. Introduction. 5.1.1. Transformation vers l'espace normal standard multivarié 5.1.2. Copules et corrélation 5.1.3. Transformations isoprobabilistes 5.2. Méthodes basées sur le point de défaillance le plus probable 5.2.1. Méthode de fiabilité du premier ordre (FORM) 5.2.2. Méthode de fiabilité du second ordre (SORM) 5.3. Méthodes de simulation 5.3.1. Simulation de Monte-Carlo 5.3.2. Subset Simulation (SS) 5.3.3. Méthodes d'échantillonnage préférentiel (IS) et d'entropie croisée (CE) 5.4. Mesures de sensibilité. 5.4.1. Introduction 5.4.2. FORM 5.4.3. Simulation MCS et Subset Simulation 5.5. Bibliographie.	153 155 158 161 169 174 177 178 180 197 206 206 208 213 216
Chapitre 6. Méthodes adaptatives basées sur le krigeage pour l'évaluation de probabilités de défaillance : focus sur les méthodes AK	223
Cécile Mattrand, Pierre Beaurepaire et Nicolas Gayton	
 6.1. Introduction. 6.2. Présentation du krigeage 6.2.1. Principe 6.2.2. Identification des hyperparamètres de krigeage 6.2.3. Prédiction par krigeage 6.2.4. Illustration de la prédiction par krigeage 6.3. Utilisation du krigeage pour le calcul de probabilités de défaillance 6.3.1. Fonction <i>EFF</i> 6.3.2. Fonction <i>U</i> 6.3.3. Fonction <i>IMSE_T</i> 	223 226 226 227 228 228 229 230 230 231
6.3.4. Fonction <i>SUR</i>	231

	6.3.5. Fonction <i>H</i>	231
	6.3.6. Fonction <i>OBJ</i>	232
	6.3.7. Fonction <i>L</i>	232
	6.3.8. Discussion	232
	6.4. Méthode AK-MCS: présentation et principe générique	233
	6.4.1. Présentation de la méthode AK-MCS	233
	6.4.2. Illustration de la méthode AK-MCS	234
	6.4.3. Discussion	237
	6.5. Méthode AK-IS pour l'estimation de probabilités	
	d'événements rares	237
	6.5.1. Présentation de la méthode AK-IS	237
	6.5.2. Illustration de la méthode AK-IS	238
	6.5.3. Discussion	238
	6.6. Méthode AK-SYS pour les problèmes de fiabilité système	239
	6.6.1. Quelques généralités sur l'analyse de fiabilité système	239
	6.6.2. Présentation de la méthode AK-SYS	240
	6.6.3. Illustration de la méthode AK-SYS	242
	6.6.4. Alternatives à la méthode AK-SYS	244
	6.6.5. Application aux problèmes indexés par un sous-ensemble	245
	6.7. Méthode AK-HDMR1 pour les problèmes en grande dimension	247
	6.7.1. Décomposition fonctionnelle HDMR	248
	6.7.2. Présentation de la méthode AK-HDMR1	249
	6.8. Conclusion	251
	6.9. Bibliographie	251
	•	
	napitre 7. Analyse de sensibilité globale ciblée pour la fiabilité	
	n présence d'incertitudes sur les paramètres de distribution	255
	ncent CHABRIDON, Mathieu BALESDENT, Guillaume PERRIN,	
Jé	rôme MORIO, Jean-Marc BOURINET et Nicolas GAYTON	
	7.1. Introduction	255
	7.2. Cadre théorique et notations	260
	7.3. Indices de sensibilité globaux basés sur la variance et ciblés	200
	pour la fiabilité	262
	7.3.1. Présentation des indices de Sobol' sur la fonction indicatrice	263
	7.3.2. Réécriture des indices de Sobol' sur la fonction indicatrice	203
	à l'aide du théorème de Bayes	264
	7.4. Indices de Sobol' sur la fonction indicatrice adaptés à l'incertitude	201
	d'entrée à deux niveaux	267
	7.4.1. Analyse de fiabilité sous incertitude des paramètres	207
	de distribution	267
	de dibutodition	207

7.4.2. Incertitudes à deux niveaux d'entrée : incertitudes agrégées	
et désagrégées	269
7.4.3. Variables aléatoires désagrégées	270
7.4.4. Extension des indices de Sobol' au double niveau d'incertitudes	
et estimateurs <i>pick-freeze</i>	271
7.5. Estimation efficace à l'aide d'un échantillonnage par Subset	
Simulation et de techniques à noyaux	273
7.5.1. Le problème de l'estimation de la distribution optimale	
à la défaillance	273
7.5.2. Version tensorisée basée sur les données	
de l'algorithme G-KDE	277
7.5.3. Méthodologie basée sur un échantillonnage par <i>Subset</i>	
Simulation et un G-KDE tensorisé basé sur les données	278
7.6. Exemples d'application	280
7.6.1. Exemple n° 1 : un cas jouet à base de fonction polynomiale	281
7.6.2. Exemple n° 2 : une structure en treillis	287
7.6.3. Exemple n° 3: application à l'estimation de la zone	
de retombée d'un étage de lanceur.	292
7.6.4. Synthèse des résultats numériques et discussion	300
7.7. Conclusion	301
7.8. Remerciements	302
7.9. Bibliographie	302
Chapitre 8. Optimisation multi-objectif stochastique :	
un algorithme de descente	305
Quentin MERCIER et Fabrice POIRION	
8.1. Introduction	305
	303
8.2. Rappels mathématiques	307
8.2.1. Processus stochastiques	307
8.2.2. Analyse convexe	314
8.3. Optimisation multi-objectif et vecteur de descente commun	
8.3.1. Relations binaires	314
8.3.2. Optimisation multi-objectif, préordre de Pareto	315
8.3.3. Vecteur de descente commun	321
8.4. Algorithme de descente pour l'optimisation multi-objectif	22.4
et son extension au cadre stochastique.	324
8.4.1. Multiple Gradient Descent Algorithm (MGDA)	324
8.4.2. Stochastic Multiple Gradient Descent Algorithm (SMGDA)	325

8.5. Illustrations 8.5.1. Performance de l'algorithme SMGDA 8.5.2. Approche multi-objectif pour les problèmes RBDO 8.5.3. Réécriture de la contrainte probabiliste	331 331 335 336
8.6. Bibliographie	341 345
Index	347