Table des matières

Préface. Des formes de savoir citoyennes	1
Avant-propos. Regard sur une technique	3
Remerciements	7
Chapitre 1. Mettre le monde en équations	11
1.1. Une simulation lorsque l'expérience est impossible	11
1.2. Construction des modèles de la mécanique	14
Chapitre 2. Concevoir et prévoir	21
2.1. Concevoir une éolienne	21
2.2. Écrire la mécanique	23
2.2.1. Un solide se déforme	23
2.2.2 sous la pression d'un écoulement	27
2.3. Simuler pour prévoir	29
Chapitre 3. Du modèle physique au calcul scientifique	35
3.1. Des équations de la physique	36
3.1.1. Ondes sensuelles	36
3.1.2. Éole et Neptune	37

3.1.3. Limite et commencement	40 40
3.1.4. Les équations ont leur personnalité	40
3.1.5 et portent le nom de personnalités	45
3.2. Eurêka! Trouver une formule mathématique	43
3.3. Calculer à l'aide d'un ordinateur	-
3.3.1. Point par point.	49
3.3.2. Des éléments de toutes les tailles	51
3.3.3. Des volumes de toutes les formes	57
Chapitre 4. Valider et améliorer une simulation	59
4.1. Valider une simulation	60
4.1.1. Confronter les points de vue	60
4.1.2. Se fier à l'expérience	63
4.2. Améliorer une simulation	65
4.2.1. Être plus précis	65
4.2.2. Être plus complet	71
4.2.3. Être plus économe	74
4.3. Gagner en efficacité	75
4.3.1. Jouer collectif	75
4.3.2. Concentrer l'information	78
4.3.3. Apprendre de ses erreurs	82
4.3.4. Garder son énergie	86
is.i. Garder son energie	00
Chapitre 5. Pratiques de la simulation	89
5.1. Bâtir la confiance	90
5.1.1. Maturité d'une technique	90
5.1.2. Deux façons de voir le monde	92
5.2. Pratiquer, pratiquer, pratiquer	96
5.2.1. La palette de l'ingénieur	96
5.2.2. À chacun selon ses besoins et ses moyens	101
5.3. Immersion dans le numérique	108
Chapitre 6. Des enjeux globaux	111
6.1. Une technique bien généralisée	112
6.2. Calcul haute performance	115
6.2.1. Une technique stratégique	115
0.2.1. One technique suategique	113

6.2.2. Hercule du calcul	117
6.2.3. Une puissance au service de l'énergie	123
6.2.4. Une puissance qui a du sens	126
6.3. Place de la France	132
6.3.1. Un pays numérique ?	132
6.3.2. Des innovations collectives	137
Chapitre 7. Mettre le monde en données	143
7.1. La science des données	144
7.1.1. Changement de point de vue	144
7.1.2. Giga, péta, zetta	145
7.1.3. Apprendre à partir de corrélations	149
7.1.4. Cerveaux numériques	150
7.2. Utiliser des données	156
7.2.1. Un nouveau Rembrandt	157
7.2.2. La forme d'une ville	159
7.2.3. Plein la vue	161
7.2.4. Les moissons du ciel	163
7.2.5. Champs, étoiles et nuages	166
7.3. Et les humains ?	168
7.3.1. La main de l'homme	168
7.3.2. Dis-moi ce que tu aimes	170
7.3.3. Un chiffre pour l'intelligence ?	179
7.3.4. Intelligence ou intelligences ?	184
7.3.5. Le cerveau en équations et en données	187
7.4. Intelligences humaines et numériques	199
7.4.1. Intelligence artificielle ?	200
7.4.2. Science-fiction	204
7.4.3. Science sans fiction	206
7.4.4. Complémentarité des intelligences	209
7.4.5. Complexité et robustesse	212
7.4.6. Jeu de l'imitation	214
7.4.7. Priorité au droit	216
7.4.8. Plus humains que l'humain ?	219
Conclusion. Une technique au service des humains ?	225
Annexes. Un monde numérique	237

viii La simulation numérique

Glossaire	287
Bibliographie	301
Filmographie	321
Index	323