Table des matières

Avant-propos	11
Chapitre 1. Introduction à la filière technologique de l'hydrogène	13
1.1. L'hydrogène comme vecteur énergétique	13
1.1.1. Les méthodes de production	18
1.1.2. Les technologies de stockage	20
1.1.2.1. Stockage sous forme liquide	20
1.1.2.2. Stockage gazeux sous haute pression	20
1.1.2.3. Stockage sous basse pression	21
1.1.3. Les réseaux de distribution et risques associés	21
1.1.3.1. Risque de fuite	22
1.1.3.2. Risque d'inflammabilité	22
1.1.3.3. Risque de formation d'une nappe explosive	22
1.1.4. Les avantages et les défis à soulever	22
1.1.4.1. Les avantages	23
1.1.4.2. Les inconvénients	23
1.2. Les types des piles à combustible	23
1.2.1. Les différentes technologies des piles à combustible	24
1.2.1.1. Principe de fonctionnement des piles à combustible	25
1.2.1.2. Pile à combustible à membrane polymère (PEMFC)	25
1.2.1.3. Pile à combustible alcaline (AFC)	27
1.2.1.4. Pile à combustible à acide phosphorique (PAFC)	30
1.2.1.5. Pile à combustible à carbonates fondus (MCFC)	32
1.2.1.6. Pile à combustible à oxyde solide (SOFC)	35

1.2.1.7. Pile à combustible à méthanol direct (DMFC)	₽0 ₽1
1.2.2. Le couple piles/applications	
1.2.2.1. Secteur du stationnaire	
1.2.2.2. Marché des transports	3
1.2.2.3. Secteur portable	3
1.2.3. Les avantages et les problèmes à optimiser	4
1.3. La pile à membrane échangeuse de proton	15
1.3.1. La structure élémentaire de la pile PEMFC	7
1.3.1.1. La couche d'électrolyte	8
1.3.1.2. La couche catalytique	2
	3
1.3.1.4. Les plaques bipolaires	3
	4
1.3.3. Fonctionnement et problème de vieillissement	6
	7
7 11	8
y .	8
1	8
	9
	9
	9
1.5. Quiz	0
Chapitre 2. Les phénomènes de transfert de charges 6	1
2.1. Introduction	
2.2. Thermodynamique et chimie de la pile PEM 6	
2.2.1. La réaction de base 6	
2.2.2. La chaleur de réaction	
1	53
	4
2.2.5. Effet de la pression 6	
1	7
2.2.7. Efficacité théorique	0

	2.3. Les débits des réactifs et des produits	72
	2.3.1. Débit d'oxygène	72
	2.3.2. Débit d'hydrogène	73
	2.3.3. La quantité d'eau produite	74
	2.4. Électrochimie de la pile	74
	2.4.1. La cinétique des électrodes	74
	2.4.2. Énergie d'activation	75
	2.4.3. Vitesse de réaction	76
	2.4.4. Courant d'échange	76
	2.4.5. Densité de courant	77
	2.5. Phénomènes de polarisation	78
	2.5.1. Polarisation d'activation	79
	2.5.2. Polarisation ohmique	80
	2.5.3. Polarisation de concentration	82
	2.5.4. Tension réelle	84
	2.5.5. Courbe de polarisation	84
	2.5.6. Plage optimale de fonctionnement	85
	2.6. Modélisation du transfert de charge	85
	2.7. Aperçu sur les modèles analytiques	86
	2.7.1. Les modèles analytiques simples	86
	2.7.2. Les modèles analytiques complexes	87
	2.8. Les modèles empiriques	87
	2.9. Transport de courant et conservation de charge	87
	2.10. Conclusion	89
<u> </u>		0.4
CI	hapitre 3. Les phénomènes de transfert de masse	91
	3.1. Introduction	91
	3.2. Les flux de matière	91
	3.3. Le transfert de masse par convection	95
	3.4. Le transfert de masse dans les diffuseurs poreux	98
	3.4.1. La conservation de la masse	98
	3.4.2. La conservation des espèces	98
	3.4.3. Quelques lois paramétriques	103
	3.4.3.1. Pression de saturation	103
	3.4.3.2. Coefficient de diffusion binaire du mélange gazeux	104
	3.4.3.3. Isotherme de sorption	105
	3.5. Transfert de masse dans les couches de réaction (électrodes)	106
	3.5.1. Modèle à faible courant (Butler-Volmer)	106
	3.5.2. Modèle d'agglomérat à fort courant	108

3.6. Transfert de masse dans la membrane	110
3.6.1. Paradoxe de Schröeder	110
3.6.2. Échelle microscopique	112
3.6.2.1. Mécanique statistique	112
3.6.2.2. Dynamique moléculaire	112
3.6.3. Échelle mésoscopique	114
3.6.4. Échelle macroscopique	116
3.6.4.1. Modèle de transport de type milieu poreux	116
3.6.4.2. Modèle phénoménologique	121
3.6.5. Les lois paramétriques	124
3.6.5.1. La teneur en eau	124
3.6.5.2. La conductivité ionique de la membrane	125
3.6.5.3. Le coefficient de diffusion d'eau dans la membrane	125
3.6.5.4. Le coefficient électro-osmotique	126
3.7. Conclusion	126
Chapitre 4. Les phénomènes de transfert de chaleur	129
	129
4.1. Introduction.	131
4.2. Les bilans énergétiques pour une pile à combustible PEMFC	131
4.2.1. Bilan d'énergie pour un <i>stack</i>	131
4.2.2. Bilan d'énergie pour les composants et pour les gaz	
4.2.3. Bilan d'énergie pour la phase gazeuse	134 134
4.2.4. Bilan d'énergie pour la structure solide	
4.3. Le flux de chaleur dans les différentes couches de la pile PEMFC	135
4.3.1. Transfert de chaleur par conduction	135
4.3.2. Dissipation de chaleur par convection naturelle	126
et par rayonnement	136
4.4. La gestion thermique dans une pile PEM	137
4.4.1. Les systèmes de refroidissement	137
4.4.2. Refroidissement par convection du flux d'air à la cathode	137
4.4.2.1. Refroidissement avec des canaux d'air séparés	138
4.4.2.2. Refroidissement par un liquide	139
4.4.2.3. Refroidissement par évaporation.	139
4.4.2.4. Refroidissement par dissipateur thermique intégré	140
4.4.2.5. Refroidissement par des plaques	140
4.4.3. L'effet de la température sur la performance de la pile PEM	141
4.5. Les sources de chaleur dans la pile PEM	141
4.5.1. Dans la membrane polymère	144

4.5.2. Dans les électrodes	144
4.5.2.1. Flux de chaleur de la réaction	145
4.5.2.2. Flux de chaleur d'activation électrochimique	
des réactions	145
4.5.3. Dans les GDL	146
4.5.4. Le phénomène d'évaporation et de condensation de l'eau	147
4.6. Distribution de la température entre deux cathodes : étude de cas	150
4.7. Conclusion	155
Lista das symboles	157
Liste des symboles	157
Bibliographie	159
Index	175