Table des matières

Introduction	13
Chapitre 1. Forme et matière : la genèse des matériaux	17
1.1. Rôle et évolution des formes géométriques en chimie	18
1.1.1. Forme et matière : les origines	18
1.1.2. De la Renaissance à la chimie moderne	20
1.1.3. L'époque contemporaine	22
1.2. Apports de la complexité des formes et de la thermodynamique	24
1.2.1. L'évolution vers des formes complexes	24
1.2.2. Introduction de la thermodynamique généralisée	26
1.2.3. Vers un classement des matériaux	27
1.3. Conclusion	28
1.4. Bibliographie	29
Chapitre 2. Thermodynamique de la matière condensée	31
2.1. Les définitions thermodynamiques	32
2.1.1. Notion de système thermodynamique	32
2.1.2. Rappels de thermodynamique des états d'équilibre	33
2.1.3. Transformations énergétiques et efficacité	36
2.1.3.1. Point historique, la machine à vapeur de Watt	36
2.1.3.2. Conversions entre les différentes formes d'énergie	36
2.1.4. Systèmes hors équilibre thermodynamique	39
2.1.4.1. Les processus irréversibles linéaires	39
2.1.4.2. Les processus non linéaires	41
2.1.4.3. Le chaos déterministe	41
2.2. Exemples de systèmes matériels	42

2.2.1. Les réponses proches de l'équilibre	43
2.2.1.1. Le transport électrique isotherme	43
2.2.1.2. Les effets thermoélectriques	44
2.2.1.3. Les effets électrocinétiques	45
2.2.2. Les réponses loin de l'équilibre	45
2.2.3. Rôle des réacteurs chimiques	48
2.2.3.1. Système isolé	49
2.2.3.2. Système fermé	49
2.2.3.3. Système ouvert	50
2.3. Élaboration et caractérisation des matériaux	52
2.3.1. Situation proche de l'équilibre : cristallogenèse	52
2.3.2. Situation loin de l'équilibre : morphogenèse	54
2.3.3. Remarques sur les procédés d'élaboration	58
2.4. Conclusion	58
2.5. Bibliographie	59
Chapitre 3. Classification des matériaux	61
3.1. Rôle des surfaces et interfaces	62
3.1.1. Nature et symétrie d'une séparation de phase	62
3.1.2. Classement en fonction des sollicitations	63
3.1.3. Composition d'un système	63
3.1.4. Types de réponses et fonctionnalités	65
3.2. Principales familles de matériaux et systèmes	66
3.2.1. Matériaux de structure	66
3.2.1.1. Rappel sur les lois de comportement	66
3.2.1.2. Comparaison entre divers matériaux	67
3.2.1.3. Phénomènes associés	68
3.2.2. Opérateurs et transmetteurs électroniques	69
3.2.2.1. Réponses linéaires dans un matériau monophasique	69
3.2.2.2. Effets non linéaires en électronique	70
3.2.2.3. Circuits et oscillateurs couplés	72
3.2.2.4. Remarques sur les matériaux magnétiques	
ou supraconducteurs	73
3.2.3. Dispositifs optiques	74
3.2.3.1. Cas des milieux transparents	75
3.2.3.2. Cas des milieux absorbants	78
3.2.4. Adsorbeurs et capteurs chimiques	80
3.2.4.1. Rappels sur les mécanismes d'adsorption	80
3.2.4.2. Les matériaux poreux	82
3.2.4.3. Analyse d'un système poreux ouvert	82

3.2.4.4. Les capteurs chimiques	84
3.2.5. Actionneurs et analogues	85
3.2.5.1. Les microsystèmes électromécaniques	85
3.2.5.2. La technologie des écrans tactiles	86
3.3. Conclusion	86
3.4. Bibliographie	87
Chapitre 4. Matériaux et dispositifs pour l'énergie	
et l'information	89
4.1. Conversion et stockage de l'énergie électrique	89
4.1.1. Générateurs électriques à transformation directe	90
4.1.1.1 Les cellules photovoltaïques	90
4.1.1.2. Les générateurs thermoélectriques	92
	92 94
4.1.1.3. L'énergie mécanique et la pression osmotique	
4.1.1.4. Les cellules électrochimiques, piles et batteries	94
4.1.1.5. Les convertisseurs électriques, piles à combustible	96
4.1.1.6. Les supercondensateurs électriques	97
4.1.2. Production indirecte et utilisation de l'électricité	98
4.1.2.1. Comparaison entre les différents types de générateurs	98
4.1.2.2. Remarques sur l'utilisation de l'électricité	100
4.1.3. Stockage de l'énergie	101
4.1.3.1. Méthodes générales de stockage	101
4.1.3.2. Le stockage de l'électricité	102
4.2. Enregistrement et stockage d'une information	104
4.2.1. Caractéristiques générales	104
4.2.2. Les principaux types de mémoires	106
4.2.2.1. Mémoires optiques	106
4.2.2.2. Mémoires magnétiques	107
4.2.2.3. Mémoires électroniques	109
4.3. Conclusion	111
4.4. Bibliographie	111
Biologiapine	
Chapitre 5. Modèles microscopiques et thermodynamique	
statistique	115
5.1. Les modèles microscopiques classiques	115
5.1.1. Loi de distribution et définition de l'entropie statistique	116
5.1.2. Systèmes thermodynamiques et ensembles canoniques	117
5.1.2.1. Système isolé et ensemble microcanonique	117
5.1.2.2. Système fermé et ensemble canonique	117
5.1.2.2. Système ouvert et ensemble grand canonique	117
5.1.2.5. Systeme ouvert et ensemble grand canomque	11/

5.1.3. Situations en dehors de l'équilibre	118
5.1.3.1. L'équation de transport de Boltzmann	118
5.1.3.2. Le théorème de fluctuation-dissipation	119
5.1.3.3. Réversibilité microscopique	119
5.1.3.4. Production maximale d'entropie	119
5.1.4. La thermodynamique stochastique	120
5.2. Les statistiques quantiques	120
5.2.1. Rappel des postulats	121
5.2.2. Lois de distribution quantique	121
5.2.2.1. Fonction de Fermi-Dirac	121
5.2.2.2. Fonction de Bose-Einstein	122
5.2.2.3. Limites de validité d'une distribution gaussienne	122
5.2.3. Excitations élémentaires et particules quantiques	
dans les solides	123
5.3. La théorie de l'information	125
5.3.1. Le modèle Shannon-Brillouin	125
5.3.2. Énergie et information : le principe de Landauer	126
5.3.3. Le rôle de la mécanique quantique	128
5.3.4. Remarques sur la notion d'information et le concept d'entropie .	130
5.3.4.1. Équivalence entre information, énergie et entropie	130
5.3.4.2. Relation avec la production maximale d'entropie	130
5.4. Conclusion	131
5.5. Bibliographie	132
Chapitre 6. Présentation des nanomatériaux	135
6.1. Les nouvelles classes de matériaux	135
6.1.1. Les polymères conjugués conducteurs	136
6.1.2. Les sels et complexes à transfert de charge	137
6.1.3. Les phases carbonées moléculaires	138
6.1.4. Les autres nanomatériaux	140
6.2. Assemblages et manipulations nanométriques	140
6.2.1. Les techniques de films minces et de structures imposées	141
6.2.2. Chimie supramoléculaire et approche colloïdale	142
6.2.3. Les nanofils et nanocomposites	145
6.2.4. La détection et la manipulation de particules	146
6.2.4.1. Les nouvelles microscopies	147
6.2.4.2. Les pinces optiques	148
6.2.5. Reconnaissance moléculaire, nanocapteurs et actuateurs	149
6.3. Conclusion	150
6.4. Bibliographie	151

Chapitre 7. Ingénierie et électronique moléculaire	153
7.1. Les nanotechnologies	153
7.1.1. La nanoélectronique	153
7.1.1.1. Transistors et circuits logiques	154
7.1.1.2. Exemples de composants moléculaires	155
7.1.2. La nanophotonique	156
7.1.2.1. Cristaux photoniques et métamatériaux	157
7.1.2.2. Nanocristaux fluorescents	158
7.1.2.3. Diodes organiques électroluminescentes	159
7.1.2.4. Molécules photochromes	160
7.1.3. Le nanomagnétisme	161
7.1.3.1. Nanoaimants moléculaires	161
7.1.3.2. Molécules à transition de spin	163
7.1.4. Les nanomachines	164
7.2. Mémoire et logique quantique	165
7.2.1. Rappels des phénomènes quantiques	165
7.2.2. Dispositifs expérimentaux	167
7.2.2.1. Boucles supraconductrices	167
7.2.2.2. Technique des ions piégés	168
7.2.2.3. Contrôle des spins dans un matériau	168
7.2.3. Information, thermodynamique et chaos quantiques	170
7.3. État de l'art : nanomatériaux et électronique quantique	170
7.4. Bibliographie	171
Chapitre 8. Monde vivant, biomatériaux et biosystèmes	175
8.1. Systèmes vivants et bilans énergétiques	176
8.1.1. Rappels sur la définition du monde vivant	176
8.1.2. Modèle thermodynamique	178
8.1.3. Conversion et stockage de l'énergie	181
8.1.3.1. La photosynthèse naturelle	181
8.1.3.2. Le cas des cellules animales	182
8.1.3.3. Les récepteurs sensitifs	184
8.1.4. Fonctionnement d'un réacteur cellulaire	184
8.2. Biomatériaux et biosystèmes	185
8.2.1. Morphogénèse et biomimétisme	185
8.2.1.1. Formation de motifs auto-organisés	186
8.2.1.2. Fibres et structures hiérarchisées dans les composites	186
8.2.2. Biodétecteurs et fonctions analogues	188
8.2.2.1. Biocapteurs et interfaces	188
8.2.2.2. Microélectrodes ou synapses artificielles	190

8.2.2.3. Biopuces et réseaux d'ADN	190
8.2.2.4. Encapsulation et nanovecteurs	190
8.2.3. Bioconvertisseurs et sources naturelles d'énergie	191
8.2.3.1. Biopiles	192
8.2.3.2. Transformations bioénergétiques	193
8.2.4. Moteurs, récepteurs et robots bioniques	196
8.2.4.1. Moteurs biologiques	196
8.2.4.2. Récepteurs sensitifs et robots	197
8.2.5. Bioinformatique	198
8.2.5.1. Simulation numérique d'une cellule vivante	198
8.2.5.2. Génomique	198
8.2.5.3. Mémo-ordinateurs	200
8.3. Biosynthèses	200
8.3.1. Modification et création d'un génome	200
8.3.2. Biotechnologies	201
8.4. Conclusion	201
8.5. Bibliographie	202
Chapitre 9. Extensions aux organismes vivants et à l'écologie	207
9.1. Comportement d'ensembles cellulaires et d'organes	207
9.1.1. Oscillations biochimiques et rythmes biologiques	208
9.1.2. Organisations spatiotemporelles et structures de Turing	209
9.1.3. Rythmes et chaos dans certains organes	211
9.1.4. Réseaux de neurones, information et comportement cognitif	213
9.2. Physiologie d'un organisme vivant	216
9.2.1. Système thermodynamique et métabolisme	216
9.2.2. Comportements collectifs	218
9.3. Écosystèmes et cycles naturels	219
9.3.1. Le cycle proie-prédateur	220
9.3.2. Les grands cycles naturels	221
9.3.3. Les modèles climatiques	223
9.4. Conclusion	225
9.5. Bibliographie	226
Chapitre 10. Application de la thermodynamique à l'économie	229
10.1. Les modèles thermodynamiques en économie	230
10.1.1. Chronologie des modèles énergétiques	230
10.1.2. Analyse des concepts fondamentaux	235
10.1.2.1. Remarque sur le rôle de la monnaie	235
10.1.2.2. Validité de la notion de système et sous-système	236
10.1.2.3. De la signification de l'énergie et de l'entropie	237

10.2. Dynamique des systèmes économiques et financiers	239
10.2.1. Les cycles économiques	239
10.2.1.1. Cycles courts ou mineurs	239
10.2.1.2. Cycle long de Kondratiev	239
10.2.2. Analyse des fluctuations financières	240
10.2.3. Le chaos boursier ou krach	241
10.2.4. Modélisation statistique des systèmes financiers	242
10.2.5. Commentaire sur le comportement d'un système financier	244
10.3. Conclusion	245
10.4. Bibliographie	245
Chapitre 11. Des systèmes thermodynamiques	
aux systèmes complexes	249
11.1. Modèles thermodynamiques : de l'énergie à l'entropie	250
11.1.1. Modélisation d'un système thermodynamique	250
11.1.1. Wodensation d'un système thermodynamique	250
11.1.1. Le cas d'école pour un système isole	250
11.1.1.2. Les systèmes réers, refines ou ouverts	252
11.1.2. Concept d'entropie et information	252
11.1.2.1. Evolutions phenomenologique et inferoscopique	253
11.1.2.2. Entropie statistique et information	255
11.2. Classement des matériaux et dispositifs	256
11.2.1. Les matériaux avancés fonctionnels	256
11.2.2. Les nanomatériaux et la mécanique quantique	257
11.2.3. Les biomatériaux et la mécamque quantique	258
11.2.4. Extension aux organismes vivants et aux systèmes	230
écologiques et économiques	259
11.3. Rythmes, complexité et synergie des systèmes dynamiques	259
11.3.1. De l'analyse des formes à une fonctionnalité	260
11.3.1. De l'analyse des formes à une fonctionnaire	261
11.3.2. Analyse d'échéne et merarche organisationnene	262
11.3.4. Systèmes dynamiques et cybernétiques	263
11.3.5. Vers une définition des systèmes complexes	265
11.4. Épilogue : unicité descriptive et limite des bases thermodynamiques	267
11.5. Bibliographie	268
Glossaire	271
Index	277