Table des matières

Préface	11
Remerciements	13
Introduction	15
Chapitre 1. Les semi-conducteurs organiques	17
 1.1. Rappels de chimie organique 1.2. Modèle quantique de l'atome 1.2.1. La structure électronique des atomes 1.2.1.1. Les orbitales atomiques s et p 1.2.1.2. Les orbitales s 1.2.1.3. Les orbitales p 1.2.2. Les orbitales moléculaires 1.2.2. Les orbitales moléculaires 1.2.2.1. Couche de cœur, couche de valence 1.2.2.2. Liaisons entre atomes 1.2.2.3. Recouvrement d'orbitales 1.3. Les liaisons sigma (σ) et pi (π) 	17 18 20 21 21 21 22 22 22 22 25
1.4. Exemple d'orbitales moléculaires pour des molécules simples 1.4.1. Exemple de la molécule de dihydrogène 1.4.2. Le cas du charbone 1.4.3. L'hybridation de l'atome de carbone 1.4.4. L'hybridation sp³ du carbone 1.4.5. L'hybridation sp² du carbone	25 25 26 27 28 28
1.4.6. L'hybridation <i>sp</i> du carbone	29

1.5. Diagramme d'énergie des différentes hybridations	30
1.6. Molécules conjuguées	32
1.6.1. Ethylène	33
1.6.2. Benzène	33
1.7. Polymères conjugués	34
1.8. Influence de la longueur de conjugaison	35
1.9. Propriétés électroniques des matériaux organiques	37
1.10. Propriétés optiques des semi-conducteurs organiques	39
1.10.1. Fluorescence et phosphorescence	39
1.10.2. Les transitions optiques dans les matériaux organiques	40
1.10.3. Les phénomènes de transfert d'énergie	44
1.10.4. Mécanisme de Förster	44
1.10.5. Mécanisme de Dexter	46
1.11. Les pertes dans les matériaux organiques	47
1.11.1. Les pertes par interaction bimoléculaire	47
1.11.2. Les pertes par absorption polaronique	47
1.11.3. Les pertes singulet-singulet (S-S)	48
1.11.4. Annihilation triplet-triplet (T-T)	48
1.11.5. Les pertes singulet-triplet (S-T)	49
1.11.6. Les pertes par croisement inter-système	49
1.11.7. Les pertes par absorption polaronique	49
1.12. Notions de photométrie	50
1.12.1. Le flux lumineux	51
1.12.2. L'intensité lumineuse	52
1.12.3. La luminance.	53
1.12.4. L'éclairement	54
1.12.5. Les rendements	55
1.12.5.1. Le rendement quantique	55
1.12.5.2. Le rendement quantique interne η_{int}	56
1.12.5.3. Le rendement lumineux	56
1.13. Notions de colorimétrie	57
1.14. Conclusion	58
Chapitre 2. Les diodes électroluminescentes organiques	59
2.1. Fonctionnement d'une OLED	60
2.2. L'injection de porteurs de charges	62
2.2.1. Signification et intérêt de l'alignement des niveaux d'énergie	63
2.2.2. Les différents mécanismes d'injection des charges	
aux électrodes	64
2.2.2.1. L'injection thermoélectronique (T \neq 0; E _a = 0)	65

2.2.2.2. L'injection par effet de champ (émission Schottky) :	
E _a moyennement intense	66
2.2.2.3. Injection par effet tunnel	67
2.2.3. Optimisation de l'injection de charges	68
2.2.3.1. Choix de l'anode	69
2.2.3.2. Choix de la cathode	70
2.3. Le transport de charges	70
2.3.1. Couche de transport des trous	71
2.3.2. Couche de transport des électrons	77
2.4. Recombinaisons de charge et génération d'excitons	80
2.4.1. Le matériau hôte idéal	81
2.4.2. Matériaux hôtes transporteurs d'électrons	81
2.4.3. Matériaux hôtes transporteurs de trous	82
2.5. Dopants	83
2.5.1. Les dopants émettant dans le rouge	84
2.5.2. Les dopants émettant dans le vert	86
2.5.3. Les dopants émettant dans le bleu	86
2.6. Les techniques de fabrication des OLED	89
2.6.1. Dépôt par évaporation thermique sous vide	90
2.6.2. Dépôt par tournette (spin-coating)	92
2.6.3. Dépôt par impression jet d'encre (<i>ink-jet</i>)	93
2.6.3.1. Avantage de la technique de dépôt par jet d'encre	93
2.6.3.2. Inconvénient de la technique de dépôt par jet d'encre	94
2.6.4. La technique de dépôt par <i>Roll-to-Roll</i>	95
2.6.5. Quelle est la meilleure méthode de dépôt ?	95
2.7. Caractérisation de l'électroluminescence d'une OLED	95
2.8. Caractérisation courant-tension-luminance (J-V-L)	
d'une hétérostructure OLED	96
2.9. Conclusion	99
Chapitre 3. Les lasers organiques	101
	101
3.1. Principe du laser	101
3.1.1. Mécanismes de transitions	101
3.1.2. La cavité laser	107
3.1.3. Le pompage	112
3.1.3.1. Le pompage optique	112
3.1.3.2. Le pompage électrique.	112
3.2. L'effet laser dans les matériaux organiques	112
3.2.1. Le gain optique dans les semi-conducteurs organiques	113
3.2.2. Les résonateurs optiques	115

3.3. Modèle théorique du laser à semi-conducteurs organiques	115
3.4. Lasers organiques sous pompage optique	118
3.4.1. Le milieu à gain organique	118
3.4.2. Différents types de cavités lasers	119
3.4.2.1. Laser Fabry-Perot	120
3.4.2.2. Laser DFB (Distributed Feedback Lasers)	120
3.4.2.3. Laser DBR (Distributed Bragg Reflector)	121
3.4.2.4. Laser à cristal photonique 2D	122
3.4.2.5. Les microcavités Fabry-Perot (verticales)	122
3.4.2.6. Les lasers « micro-pilier »	123
3.5. Vers le laser organique en pompage électrique	123
3.5.1. État de l'art	123
3.5.2. Vers la diode laser organique (pompée électriquement)	129
3.6. Conclusion	132
Observation 4 Name Income Income Income	400
Chapitre 4. Vers les nanolasers organiques	133
4.1. Propriétés optiques des métaux	133
4.1.1. Modèle de Drude	134
4.1.2. Modèle de Drude-Lorentz	135
4.1.3. Modèle de Drude à deux points critiques	136
4.2. Qu'est-ce qu'un plasmon ?	137
4.2.1. Plasmon de volume	137
4.2.2. Plasmon de surface délocalisé	138
4.2.3. Plasmon de surface localisé	139
4.3. Approche théorique du plasmon de surface localisé (LSP)	140
4.3.1. Théorie de Mie	141
4.3.2. Modèle dipolaire ou approximation quasi statique	141
4.3.3. Théories des fonctions diélectriques effectives	143
4.3.4. Étude numérique par FDTD (<i>Finite-Difference Time-Domain</i>)	143
4.4. Paramètres influençant le plasmon de surface localisé	144
4.4.1. Effet de la taille	144
4.4.2. Effet de la forme	144
4.4.3. Effet de la composition	145
4.4.4. Effet de l'environnement	146
4.5. Les matériaux plasmoniques et leurs propriétés	146
4.6. Propriétés optiques d'un émetteur au voisinage	
d'une NP métallique	148
4.6.1. Modification de l'absorption	150
4.6.2. Modification de l'électroluminescence	151
4.6.3. Modification de la photoluminescence	154

4.6.4. Amplification contre pertes : analyse et discussion	156
4.7. Effet du LSP sur les propriétés des sources organiques :	
état de l'art	157
4.7.1. Étude de l'effet de nanoparticules aléatoires (RMN)	
sur les propriétés des OLED	160
4.7.2. Étude de l'effet de nanoparticules périodiques (PMN)	
sur les propriétés des OLED	164
4.7.2.1. Technique de lithographie électronique	164
4.7.2.2. Les micro-OLED : intérêt, fabrication et caractérisation	166
4.7.2.3. Étude d'une μ-OLED verte incorporant	
des structures PMN d'aluminium	167
4.7.3. Étude d'une OLED plasmonique en demi-cavité verticale	169
4.8. Vers un laser plasmonique organique?	172
4.9. Conclusion	177
Conclusion	179
Annexe. Une brève histoire des lasers organiques	183
Bibliographie	191
=	
Index	205