Table des matières

Avant-propos	13
René GUINEBRETIÈRE, Philippe GOUDEAU	
Chapitre 1. Diffusion diffuse : ordre-désordre,	
transitions de phase	19
Philippe RABILLER, Céline MARIETTE, Laurent GUÉRIN et Bertrand TOUDIC	10
1.1. Introduction	19
1.1.1. Position du problème et hypothèses simplificatrices	20
1.1.2. Différents types de désordre	24
1.2. Désordre de 1 ^{re} espèce	25
1.2.1. Formalisme	25
1.2.2. Diffusion par les phonons	26
1.2.3. Corrélations de paires	34
1.2.4. Fluctuations critiques – transitions de phase	35
1.2.5. Phases modulées	39
1.3. Désordre de 2 ^e espèce	40
1.3.1. Position du problème	40
1.3.2. Distribution de la densité de diffuseurs	41
1.3.3. Profil de l'intensité diffusée	42
1.4. Composés d'inclusion d'alcanes dans l'urée	44
1.4.1. Introduction	44
1.4.2. Diagramme de diffusion des rayons X	45
1.4.3. Diffusion diffuse type TDS	46
1.4.4. Diffusion diffuse liée au désordre du sous-réseau d'alcane	47
1.4.5. Diffusion diffuse critique	49
1.5. Bibliographie	50

Chapitre 2. La diffusion centrale des rayons X	
en incidence rasante pour l'étude des surfaces	
et films minces nanostructurés	53
2.1. Introduction	53
2.2. Rayons X en incidence rasante	55
2.2.1. Cas d'un milieu semi-infini	55
2.2.1.1. Indice de réfraction et angle critique	55
2.2.1.2. Coefficient de réflexion et coefficient de transmission	56
2.2.1.3. Profondeur de pénétration et distribution	
d'intensité transmise	57
2.2.2. Cas d'un milieu stratifié	58
2.3. Diffusion centrale des rayons X en incidence rasante	59
2.3.1. Généralités	59
2.3.2. Approche cinématique de la diffusion centrale	60
2.3.3. Théorie DWBA pour un objet supporté	61
2.3.4. Théorie DWBA pour des objets enterrés	63
2.3.4.1. Milieu semi-infini	63
2.3.4.2. Milieu stratifié	64
2.4. Exemples d'application	67
2.4.1. Nanocavités et défauts induits par implantation d'hélium	
dans le silicium	67
2.4.2. Assemblées bidimensionnelles de nanoparticules d'or	
noyées dans des films minces de carbone	70
2.4.3. Croissance auto-organisée de nanoparticules d'argent	
sur des surfaces nanostructurées par pulvérisation	
ionique en incidence oblique	73
2.4.3.1. Surfaces nanostructurées par pulvérisation ionique	, -
en incidence oblique	73
2.4.3.2. Croissance auto-organisée de nanoparticules d'argent	76
2.5. Conclusion	78
2.6. Remerciements	78
2.7. Bibliographie	79
2177 Biologiaphie	,,
Chapitre 3. Analyse avancée des contraintes et des gradients	
d'orientation par microdiffraction Laue des rayons X	83
Odile ROBACH, Jean-Sébastien MICHA, Olivier ULRICH, Benoît DEVINCRE,	
Thierry Hoc, Gaël Daveau, Vincent Consonni et Johann Petit	
2.1 Avant propos	82

3.2. La microdiffraction Laue	84
3.2.1. Introduction	84
3.2.2. Intérêt d'un détecteur 2D numérique de grand diamètre	85
3.2.3. Des mesures d'orientation aux mesures de contraintes	86
3.2.4. Distorsion du diagramme de Laue	86
3.2.5. Champs de contraintes résiduelles	88
3.2.6. Construction d'un rayon diffracté, indétermination	
de la déformation correspondant à la dilatation isotrope	89
3.2.7. Influences de λ et d_{hkl} sur le diagramme de Laue	90
3.2.8. Profondeur d'analyse	90
3.2.9. Mesures de champs de contraintes et champ	
de précision associé	91
3.2.10. Largeurs des spots et densité locale de défauts plastiques	92
3.2.10.1. Notion de distribution d'intensité	
dans l'espace réciproque	92
3.2.10.2. Le diagramme de Laue vu comme une projection	
spécifique de la distribution d'intensité dans l'espace réciproque	93
3.2.10.3. Détection de différents arrangements	
de défauts plastiques	95
3.2.10.4. Obtention des densités de dislocations non appariées ou	
géométriquement nécessaires (ρ_{GND})	97
3.2.10.5. Utilisation des cartographies d'orientation	
pour déterminer les gradients	98
3.2.11. Mesures de contraintes dans des cristaux moins parfaits,	
mode 3D, Laue-DIC	98
3.2.12. Résumé sur la microdiffraction Laue classique	101
3.2.13. Variantes du micro-Laue pour l'accès à la partie radiale de	
la distribution d'intensité autour des nœuds du réseau réciproque	102
3.2.13.1. Méthode monochromatique	103
3.2.13.2. Méthode Rainbow ou « diamant tournant »	103
3.3. Analyse automatisée des diagrammes de Laue	
pour les cartographies (x, y) avec le logiciel LaueTools	104
3.3.1. Préparation de l'analyse en série avec l'interface graphique	105
3.3.1.1. Calibration de la géométrie expérimentale	
en utilisant le Laue d'un cristal de Ge (111)	105
3.3.1.2. Indexation d'un grain	105
3.3.2. Analyse en série	106
3.3.3. Analyses monograins complémentaires, analyse à un spot	107
3.3.4. Nombre de spots minimal par grain	
pour la mesure de contraintes, calcul à quatre spots	107
3.3.5. Analyse avec 2 spots d'indices hkl connus	108

3.4. Exemples d'études	109
3.4.1. CdTe polycristallin	109
3.4.1.1. Introduction	109
3.4.1.2. Propriétés électro-optiques à l'échelle locale	110
3.4.1.3. Mesures micro-Laue	111
3.4.1.4. Conclusion de l'étude sur le CdTe	122
3.4.2. Plasticité près des joints de grain dans un tricristal de Cu	122
3.4.2.1. Introduction	122
3.4.2.2. Préparation du tricristal exempt de dislocation	124
3.4.2.3. Mesures micro-Laue	125
3.4.2.4. Conclusion de l'exemple sur le tricristal de cuivre	140
3.5. Conclusion générale	141
3.6. Remerciements	141
3.7. Bibliographie	142
Chapitre 4. Rayonnement synchrotron à haute énergie et diffraction des rayons X in situ	149
4.1. Le rayonnement X de haute énergie au synchrotron	150
4.2. Instrumentation	154
4.2.1. Sources, monochromateurs et éléments de focalisation	154
4.2.2. Détecteurs	158
4.2.2.1. Mesures en dispersion d'énergie	158
4.2.2.2. Mesures en dispersion angulaire et détecteurs	
bidimensionnels (2D)	160
4.3. Exemples d'utilisation de faisceau de rayons X de haute énergie	161
4.3.1. Cartographies – textures	161
4.3.2. Mesures <i>in situ</i> en fonction de la température	163
4.3.3. Chargements mécaniques	167
4.3.3.1. Compréhension de l'effet superélastique	
dans des alliages à mémoire de forme cuivreux	167
4.3.3.2. Ajustement des propriétés superélastiques	
d'un fil de NiTi lors d'un traitement thermomécanique	169
4.3.3.3. Déstabilisation de l'austénite sous contrainte	169
4.3.4. Chargements thermomécaniques	170
4.3.4.1. Cas d'une transformation martensitique	
sous contraintes	171
4.3.5. Cartographie tridimensionnelle par diffraction des rayons X	172
4.3.6. Diffraction en dispersion d'énergie	173

4.3.6.1. Étude de l'ordre à courte distance dans la phase liquide des métaux et observation de la solidification des alliages Ti-Al-Nb 4.3.6.2. Relaxation des contraintes dans les matériaux composites à matrice métalliques durant des traitements thermiques 4.3.6.3. Étude combinée par tomographie et diffraction 4.3.6.4. Mécanique de la fracture. Évolution des champs de contraintes autour des fissures dans un acier bainitique 4.3.7. Autres techniques/futurs développements	173 174 175 176 177 178 178
Chapitre 5. Rayons X et géomatériaux à hautes pressions	
et hautes températures : une fenêtre ouverte	
sur l'intérieur de la Terre	193
Daniele Antonangeli	
5.1. Introduction	193
5.1.1. Modèle en couches DE l'intérieur de la Terre.	193
5.1.2. Limite de l'échantillonnage direct et approches indirectes	195
5.2. Minéralogie du manteau inférieur	198
5.2.1. Limites dans la minéralogie traditionnelle	
du manteau inférieur	198
5.2.2. Sources de complexité dans la minéralogie	
du manteau inférieur	199
5.2.2.1. La transition de phase pérovskite/post-pérovskite	199
5.2.2.2. Transitions de spin	200
5.3. Composition et structure du noyau	204
5.3.1. Formation de la Terre, différentiation du noyau	
et premières indications géophysiques	204
5.3.2. Le noyau solide ou graine	206
5.3.2.1. Structure cristalline du fer et de ses alliages	206
5.3.2.2. Nature et abondance des éléments légers	207
5.3.3. Le noyau liquide	209
5.3.3.1. Géotherme, transitions de phase et courbes de fusion	209
5.3.3.2. Courbe de fusion du fer et de ses alliages	210
5.3.3.3. Densité et équation d'état des alliages du fer liquide	212
5.4. Remarques finales	213
5.5. Bibliographie	213

Chapitre 6. Imagerie et composition élémentaire par	
spectrométrie en fluorescence X : exemples d'applications	
en géosciences	217
Jean CAUZID, Manuel MUNOZ et Julien BONNET	
6.1. Introduction	217
6.2. Principe physique	217
6.2.1. Les interactions photons X–matière	219
6.2.1.1. Modes d'interactions et techniques analytiques	219
6.2.1.2. Atténuation totale et diffusion élastique ou inélastique	219
6.2.1.3. Absorption	220
6.2.2. La relaxation des atomes photo-ionisés	221
6.3. Les dispositifs expérimentaux	221
6.3.1. Les sources de rayons X	222
6.3.2. Les dispositifs optiques	222
6.3.3. Les dispositifs de détection	223
6.3.4. Les spectromètres de fluorescence X	225
6.4. Composition élémentaire quantitative	225
6.4.1. Relation entre composition et intensité du signal	226
6.4.2. Paramètres fondamentaux	229
6.4.3. Coefficients d'influence	229
6.4.4. Simulations Monte-Carlo	230
6.4.5. Logiciels de traitement des données	230
6.5. Exemples	231
6.5.1. Pistolet de fluorescence X	231
6.5.1.1. But de l'étude	232
6.5.1.2. Le dispositif expérimental	232
6.5.1.3. Résultats	233
6.5.1.4. Discussion	234
6.5.2. Microfluorescence X de laboratoire	235
6.5.2.1. But de l'étude	236
6.5.2.2. Le dispositif expérimental	236
6.5.2.3. Résultats	237
6.5.2.4. Discussion	238
6.5.3. Nanofluorescence X sur ligne synchrotron:	
imagerie chimique d'inclusions fluides	239
6.5.3.1. But de l'étude	239
6.5.3.2. Le dispositif expérimental	240
6.5.3.3. Résultats	240
6.5.3.4. Discussion	242
6.6. Conclusion	244
6.7. Bibliographie	244

Chapitre 7. La diffraction des rayons X : un outil essentiel pour l'étude et l'optimisation des matériaux d'électrodes pour batteries	251
Darriet	
7.1. Introduction	251
des batteries Ni-Cd et Ni-MH	252
7.3. Les oxydes lamellaires Lix(Ni,M)O2 dans les batteries au lithium	256
7.3.1. La stœchiométrie réelle du nickelate de lithium	256
7.3.2. Le système LixNiO2	258
7.3.3. Le système P2-NaxCoO2	261
7.3.4. Le système P2-NaxVO2	263
7.3.5. Le mécanisme de désintercalation du lithium de LiFePO4	265
7.4. Conclusion	268
7.5. Bibliographie	269
de diffraction	
8.1. Le gainage du combustible en alliage de zirconium	
des réacteurs actuels à eau pressurisée	271
8.1.1. Les réacteurs à eau pressurisée (REP)	271
la gaine en alliages de zirconium	273
des alliages de zirconium	
8.1.2.2. La tenue mécanique de l'assemblage combustible	27/
	274
en alliages de zirconium	274275
en alliages de zirconium	275
en alliages de zirconium	275
en alliages de zirconium. 8.1.2.3. La diffraction des rayons X et des neutrons pour analyser le comportement mécanique. 8.1.2.4. La résistance des gaines en alliages de zirconium vis-à-vis de la corrosion.	275 278
en alliages de zirconium	
en alliages de zirconium. 8.1.2.3. La diffraction des rayons X et des neutrons pour analyser le comportement mécanique. 8.1.2.4. La résistance des gaines en alliages de zirconium vis-à-vis de la corrosion. 8.1.2.5. La diffraction des rayons X pour analyser	275278280
en alliages de zirconium. 8.1.2.3. La diffraction des rayons X et des neutrons pour analyser le comportement mécanique. 8.1.2.4. La résistance des gaines en alliages de zirconium vis-à-vis de la corrosion. 8.1.2.5. La diffraction des rayons X pour analyser l'oxyde formé à la surface des gaines à base de zirconium.	275278280

12 Rayons X et matière 5

8.2. Les réacteurs du futur de génération IV	288 290
8.3.1. La diffraction pour l'étude des aciers ODS : les analyses de texture	291
8.3.2. La diffraction pour l'étude des aciers ODS : les analyses de contraintes résiduelles	293
les analyses des phases précipitées	295 300
Liste des auteurs	303
Index	305