Table des matières

Avant-propos	13
,	
Chapitre 1. Diffusion diffuse : ordre-désordre,	
transitions de phase	19
Philippe RABILLER, Celine MARIETTE, Laurent GUERIN et Bertrand TOUDIC	
1.1. Introduction.	19
1.1.1. Position du problème et hypothèses simplificatrices	20
1.1.2. Différents types de désordre	24
1.2. Désordre de 1 ^{re} espèce	25
1.2.1. Formalisme	25
1.2.2. Diffusion par les phonons	26
1.2.3. Corrélations de paires	34
1.2.4. Fluctuations critiques – transitions de phase	35
1.2.5. Phases modulées	39
1.3. Désordre de 2 ^e espèce	40
1.3.1. Position du problème	40
1.3.2. Distribution de la densité de diffuseurs	41
1.3.3. Profil de l'intensité diffusée	42
1.4. Composés d'inclusion d'alcanes dans l'urée	44
1.4.1. Introduction	44
1.4.2. Diagramme de diffusion des rayons X	45
1.4.3. Diffusion diffuse type TDS	46
1.4.4. Diffusion diffuse liée au désordre du sous-réseau d'alcane	47
1.4.5. Diffusion diffuse critique	49
1.5. Bibliographie	50

riims minces nanostructures	
2.1. Introduction	
2.2. Rayons X en incidence rasante	
2.2.1. Cas d'un milieu semi-infini	
2.2.1.1. Indice de réfraction et angle critique	
2.2.1.2. Coefficient de réflexion et coefficient de transn	nission
2.2.1.3. Profondeur de pénétration et distribution	
d'intensité transmise	
2.2.2. Cas d'un milieu stratifié	
2.3. Diffusion centrale des rayons X en incidence rasante	
2.3.1. Généralités	
2.3.2. Approche cinématique de la diffusion centrale	
2.3.3. Théorie DWBA pour un objet supporté	
2.3.4. Théorie DWBA pour des objets enterrés	
2.3.4.1. Milieu semi-infini	
2.3.4.2. Milieu stratifié	
2.4. Exemples d'application	
2.4.1. Nanocavités et défauts induits par implantation d'hél	ium
dans le silicium	
2.4.2. Assemblées bidimensionnelles de nanoparticules d'o	r
noyees dans des films minces de carbone.	
2.4.3. Croissance auto-organisee de nanoparticules d'argent	
sur des surfaces nanostructurees par puivensation	
2 4 3 1 Surfaces nonostructurées par pulvérisation joni	· · · · · · · · ·
en incidence oblique	que
2 4 3 2 Croissance auto-organisée de nanonarticules d'	····· argent
2.5. Conclusion	
2.6 Remerciements	
2.7 Bibliographie	
2./. bioliographie	

	00
Odile ROBACH, Jean-Sébastien MICHA, Olivier ULRICH, Benoît DEVINCRE,	
Thierry HOC, Gaël DAVEAU, Vincent CONSONNI et Johann PETIT	

3.1. Avant-propos	33
-------------------	----

3.2. La microdiffraction Laue	84
3.2.1. Introduction	84
3.2.2. Intérêt d'un détecteur 2D numérique de grand diamètre	85
3.2.3. Des mesures d'orientation aux mesures de contraintes	86
3.2.4. Distorsion du diagramme de Laue	86
3.2.5. Champs de contraintes résiduelles	88
3.2.6. Construction d'un rayon diffracté, indétermination	
de la déformation correspondant à la dilatation isotrope	89
3.2.7. Influences de λ et d_{hkl} sur le diagramme de Laue	90
3.2.8. Profondeur d'analyse	90
3.2.9. Mesures de champs de contraintes et champ	
de précision associé	91
3.2.10. Largeurs des spots et densité locale de défauts plastiques	92
3.2.10.1. Notion de distribution d'intensité	
dans l'espace réciproque	92
3.2.10.2. Le diagramme de Laue vu comme une projection	
spécifique de la distribution d'intensité dans l'espace réciproque	93
3.2.10.3. Détection de différents arrangements	
de défauts plastiques	95
3.2.10.4. Obtention des densités de dislocations non appariées ou	
géométriquement nécessaires ($ ho_{ m GND}$)	97
3.2.10.5. Utilisation des cartographies d'orientation	
pour déterminer les gradients	98
3.2.11. Mesures de contraintes dans des cristaux moins parfaits,	
mode 3D, Laue-DIC	98
3.2.12. Résumé sur la microdiffraction Laue classique	101
3.2.13. Variantes du micro-Laue pour l'accès à la partie radiale de	
la distribution d'intensité autour des nœuds du réseau réciproque	102
3.2.13.1. Méthode monochromatique	103
3.2.13.2. Méthode Rainbow ou « diamant tournant »	103
3.3. Analyse automatisée des diagrammes de Laue	
pour les cartographies (x, y) avec le logiciel LaueTools	104
3.3.1. Préparation de l'analyse en série avec l'interface graphique	105
3.3.1.1. Calibration de la géométrie expérimentale	
en utilisant le Laue d'un cristal de Ge (111)	105
3.3.1.2. Indexation d'un grain	105
3.3.2. Analyse en série	106
3.3.3. Analyses monograins complémentaires, analyse à un spot	107
3.3.4. Nombre de spots minimal par grain	
pour la mesure de contraintes, calcul à quatre spots	107
3.3.5. Analyse avec 2 spots d'indices hkl connus	108

3.4. Exemples d'études	109
3.4.1. CdTe polycristallin	109
3.4.1.1. Introduction	109
3.4.1.2. Propriétés électro-optiques à l'échelle locale	110
3.4.1.3. Mesures micro-Laue	111
3.4.1.4. Conclusion de l'étude sur le CdTe	122
3.4.2. Plasticité près des joints de grain dans un tricristal de Cu	122
3.4.2.1. Introduction	122
3.4.2.2. Préparation du tricristal exempt de dislocation	124
3.4.2.3. Mesures micro-Laue	125
3.4.2.4. Conclusion de l'exemple sur le tricristal de cuivre	140
3.5. Conclusion générale	141
3.6. Remerciements	141
3.7. Bibliographie	142

Chapitre 4. Rayonnement synchrotron à haute énergie et diffraction des ravons X in situ	149
Guillaume GEANDIER, Benoît MALARD et Thomas BUSLAPS	
4.1. Le rayonnement X de haute énergie au synchrotron	150
4.2. Instrumentation	154
4.2.1. Sources, monochromateurs et éléments de focalisation	154
4.2.2. Détecteurs	158
4.2.2.1. Mesures en dispersion d'énergie	158
4.2.2.2. Mesures en dispersion angulaire et détecteurs	
bidimensionnels (2D)	160
4.3. Exemples d'utilisation de faisceau de rayons X de haute énergie	161
4.3.1. Cartographies – textures	161
4.3.2. Mesures <i>in situ</i> en fonction de la température	163
4.3.3. Chargements mécaniques	167
4.3.3.1. Compréhension de l'effet superélastique	
dans des alliages à mémoire de forme cuivreux	167
4.3.3.2. Ajustement des propriétés superélastiques	
d'un fil de NiTi lors d'un traitement thermomécanique	169
4.3.3.3. Déstabilisation de l'austénite sous contrainte.	169
4.3.4. Chargements thermomécaniques	170
4.3.4.1. Cas d'une transformation martensitique	
sous contraintes	171
4.3.5. Cartographie tridimensionnelle par diffraction des rayons X	172
4.3.6. Diffraction en dispersion d'énergie	173

4.3.6.1. Étude de l'ordre à courte distance dans la phase liquide des	
métaux et observation de la solidification des alliages Ti-Al-Nb	173
4.3.6.2. Relaxation des contraintes dans les matériaux composites	
à matrice métalliques durant des traitements thermiques	174
4.3.6.3. Étude combinée par tomographie et diffraction	175
4.3.6.4. Mécanique de la fracture. Évolution des champs	
de contraintes autour des fissures dans un acier bainitique	176
4.3.7. Autres techniques/futurs développements.	177
4.4. Conclusions et perspectives	178
4.5. Bibliographie	178
Chanitre 5 Rayons X et géomatériaux à hautes pressions	
et hautes températures : une fenêtre ouverte	
sur l'intérieur de la Terre	193
Daniele ANTONANGELI	
	102
	193
5.1.1. Modele en couches DE l'interieur de la Terre.	193
5.1.2. Limite de l'échantillonnage direct et approches indirectes	195
5.2. Minéralogie du manteau inférieur.	198
5.2.1. Limites dans la mineralogie traditionnelle	100
du manteau inferieur	198
5.2.2. Sources de complexité dans la minéralogie	100
du manteau inferieur	199
5.2.2.1. La transition de phase pérovskite/post-pérovskite	199
5.2.2.2. Transitions de spin	200
5.3. Composition et structure du noyau	204
5.3.1. Formation de la Terre, différentiation du noyau	
et premières indications géophysiques	204
5.3.2. Le noyau solide ou graine	206
5.3.2.1. Structure cristalline du fer et de ses alliages	206
5.3.2.2. Nature et abondance des éléments légers	207
5.3.3. Le noyau liquide	209
5.3.3.1. Géotherme, transitions de phase et courbes de fusion	209
5.3.3.2. Courbe de fusion du fer et de ses alliages	210
5.3.3.3. Densité et équation d'état des alliages du fer liquide	212
5.4. Remarques finales	213
5.5. Bibliographie	213

Chapitre 6. Imagerie et composition élémentaire par	
spectrométrie en fluorescence X : exemples d'applications	
en géosciences	217
Jean CAUZID, Manuel MUNOZ et Julien BONNET	
6.1. Introduction	217
6.2. Principe physique	217
6.2.1. Les interactions photons X-matière	219
6.2.1.1. Modes d'interactions et techniques analytiques	219
6.2.1.2. Atténuation totale et diffusion élastique ou inélastique	219
6.2.1.3. Absorption	220
6.2.2. La relaxation des atomes photo-ionisés	221
6.3. Les dispositifs expérimentaux	221
6.3.1. Les sources de rayons X	222
6.3.2. Les dispositifs optiques	222
6.3.3. Les dispositifs de détection	223
6.3.4. Les spectromètres de fluorescence X	225
6.4. Composition élémentaire quantitative	225
6.4.1. Relation entre composition et intensité du signal	226
6.4.2. Paramètres fondamentaux	229
6.4.3. Coefficients d'influence	229
6.4.4. Simulations Monte-Carlo	230
6.4.5. Logiciels de traitement des données	230
6.5. Exemples	231
6.5.1. Pistolet de fluorescence X	231
6.5.1.1. But de l'étude	232
6.5.1.2. Le dispositif expérimental	232
6.5.1.3. Résultats	233
6.5.1.4. Discussion	234
6.5.2. Microfluorescence X de laboratoire	235
6.5.2.1. But de l'étude	236
6.5.2.2. Le dispositif expérimental	236
6.5.2.3. Résultats	237
6.5.2.4. Discussion	238
6.5.3. Nanofluorescence X sur ligne synchrotron :	
imagerie chimique d'inclusions fluides	239
6.5.3.1. But de l'étude	239
6.5.3.2. Le dispositif expérimental	240
6.5.3.3. Résultats	240
6.5.3.4. Discussion	242
6.6. Conclusion	244
6.7. Bibliographie	244

Chapitre 7. La diffraction des rayons X : un outil essentiel pour l'étude et l'optimisation des matériaux d'électrodes pour batteries	251
Claude DELMAS, Dany CARLIER-LARREGARAY, Marie GUIGNARD et Jacques DARRIET	
7.1. Introduction	251
des batteries Ni-Cd et Ni-MH	252
7.3. Les oxydes lamellaires Lix(Ni,M)O2 dans les batteries au lithium	256
7.3.1. La stœchiométrie réelle du nickelate de lithium	256
7.3.2. Le système D_2 Neu $C_2 O_2$	258
7.3.4 Le système P2-Nax $COO2$	261
7.3.5. Le mécanisme de désintercalation du lithium de LiFePO4	265
7.4. Conclusion	268
7.5. Bibliographie	269
nucléaires actuels et du futur ; apport des techniques de diffraction Jean-Luc Béchade, Yann de Carlan, Denis Menut et Louise Toualbi	271
8.1. Le gainage du combustible en alliage de zirconium des réacteurs actuels à eau pressurisée. 8.1.1. Les réacteurs à eau pressurisée (REP)	271 271
8.1.2. L'assemblage combustible et plus précisément	
la gaine en alliages de zirconium	273
des alliages de zirconium	274
en alliages de zirconium.	275
8.1.2.3. La diffraction des rayons X et des neutrons	
pour analyser le comportement mécanique	278
vis-à-vis de la corrosion	280
l'oxyde formé à la surface des gaines à base de zirconium 8.1.2.6. La diffraction des rayons X pour l'analyse des phases	281
précipitées ; apport de la ligne MARS	284

8.2. Les réacteurs du futur de génération IV 8.3. La gaine en acier ODS	288 290
8.3.1. La diffraction pour l'étude des aciers ODS : les analyses de texture	291
8.3.2. La diffraction pour l'étude des aciers ODS : les analyses de contraintes résiduelles	293
les analyses des phases précipitées	295 300
Liste des auteurs	303
Index	305