Table des matières

Avant-propos ... 11

Chapitre 1. Modèles et systèmes dynamiques 13
 1.1. Généralités .. 13
 1.2. Modélisation des processus industriels 15
 1.3. Classes de modèles .. 17
 1.3.1. Modèles d’état (ME) 17
 1.3.2. Modèles entrée-sortie (ME/S) 25
 1.3.2.1. Modèle de connaissance 25
 1.3.2.2. Modèle de comportement 26
 1.3.2.3. Modèle de commande 28
 1.3.2.4. Modèle de conduite 31

Chapitre 2. Identification linéaire des systèmes en boucle fermée .. 35
 2.1. Aperçu d’ensemble sur l’identification des systèmes 35
 2.2. Contexte de travail .. 36
 2.3. Identification préliminaire d’un processus bouclé 41
 2.3.1. Modèles d’identification linéaires multi-variables ... 42
 2.3.2. Estimation des modèles linéaires de type MIMO par la MMC ... 45
 2.3.3. Identifier les processus bouclés à l’aide de la MMC-MV ... 49
 2.3.3.1. Données E/S mesurées directement sur le processus ... 50
 2.3.3.2. Données E/S mesurées sur le système en BF (sans accès à la commande du processus) 52
2.4. Méthodes d’identification de la classe CLOE 54
 2.4.1. Principe des méthodes CLOE 54
 2.4.2. Méthode CLOE de base 55
 2.4.3. Méthode CLOE pondérée (W-CLOE) 60
 2.4.4. Méthodes CLOE avec filtrage (F-CLOE) ou filtrage adaptatif
 (AF-CLOE) ... 71
 2.4.5. Méthode CLOE étendue (X-CLOE) 73
 2.4.6. Méthode CLOE généralisée (G-CLOE) 80
 2.4.7. Méthode CLOE pour des systèmes avec intégrateur (I-CLOE) . 89
 2.4.8. Sur la validation des modèles identifiés
 par les méthodes CLOE ... 94
2.5. Application : identification d’une suspension active 95

Chapitre 3. Conception de la commande numérique
par placement de pôles ... 109
 3.1. Commande PID numérique 109
 3.2. Commande polynomiale RST numérique 111
 3.3. Commande RST par placement de pôles 114
 3.3.1. Calcul de la commande pour la dynamique en régulation . 114
 3.3.2. Calcul de la commande pour la dynamique en poursuite . 115
 3.3.3. Commande RST à objectifs en régulation et poursuite . 116
 3.3.3.1. Performances en régulation 117
 3.3.3.2. Performances en poursuite 118
 3.4. Commande prédictive ... 119
 3.4.1. Commande prédictive à horizon fini 120
 3.4.2. Commande prédictive à horizon unitaire 122

Chapitre 4. Commande adaptative et commande robuste 129
 4.1. Systèmes adaptatifs à commande polynomiale 129
 4.1.1. Estimation des paramètres pour les systèmes
 en boucle fermée ... 130
 4.1.2. Conception de la commande adaptative 131
 4.2. Systèmes robustes à commande polynomiale 133
 4.2.1. Robustesse des systèmes en boucle fermée 133
 4.2.2. Etude de la connexion stabilité-robustesse 136
 4.2.3. Etude de la connexion non-linéarité-robustesse 138
 4.2.4. Etude de la connexion performance-robustesse 139
4.2.5. Analyse de la robustesse par l’étude sur la fonction de sensibilité 140
4.2.6. Conception de la commande RST robuste .. 143
4.2.7. Calibrage de la fonction de sensibilité ... 144

Chapitre 5. Commande multimodèle ... 147

5.1. Construction de multimodèles ... 148
 5.1.1. Logique floue, modèles de Mamdani ... 148
 5.1.2. Identification à partir de données entrées-sorties :
méthode directe .. 154
 5.1.3. Identification à partir de données entrées-sorties :
approche neuronale .. 155
 5.1.4. Linéarisation autour de divers points de fonctionnement .. 157
 5.1.5. Transformation polytopique convexe
à partir d’un modèle analytique affine en la commande ... 158
 5.1.6. Calcul de la validité des modèles de base .. 159
5.2. Stabilisation et commande des multimodèles .. 160
5.3. Conception de la commande multimodèle : approche floue 160
5.4. Suivi de trajectoire .. 161

Chapitre 6. Systèmes mal définis et/ou incertains 163

6.1. Etude de la stabilité des systèmes non linéaires
à partir des normes vectorielles .. 163
 6.1.1. Normes vectorielles ... 163
 6.1.2. Systèmes de comparaison, systèmes majorants .. 164
 6.1.2.1. Cas continu .. 164
 6.1.2.2. Cas discret .. 166
 6.1.3. Détermination des attracteurs .. 169
 6.1.3.1. Cas continu .. 169
 6.1.3.2. Cas discret .. 170
 6.1.4. Attracteurs emboîtés .. 171
6.2. Adaptation de la commande ... 172
 6.2.1. Minimisation de la taille des attracteurs : approche directe 172
 6.2.2. Minimisation de la taille des attracteurs par métaheuristique 172
6.3. Majoration de l’erreur maximale pour diverses applications 173
 6.3.1. Commande des systèmes non linéaires par placement
de pôles ... 173
 6.3.1.1. Cas continu .. 173
 6.3.1.2. Cas discret .. 174
6.3.2. Commande par difféomorphisme des processus non linéaires ... 174
6.3.3. Détermination de l’attracteur pour les processus du type Lur’e Postnikov .. 177
 6.3.3.1. Description des systèmes étudiés .. 177
 6.3.3.2. Cas du système incertain en régime non autonome (et non nul) ... 178
6.3.4. Minimisation de l’attracteur par la recherche tabou ... 180
6.4. Commande à boucle secondaire floue .. 185

Chapitre 7. Modélisation et contrôle d’un processus industriel élémentaire .. 187

 7.1. Modélisation et contrôle des processus de transfert de fluide .. 187
 7.1.1. Modélisation des processus d’écoulement de fluide .. 188
 7.1.1.1. Modèle dynamique d’un tuyau court .. 188
 7.1.1.2. Modèle dynamique d’un tuyau long .. 191
 7.1.2. Conception des systèmes de contrôle du débit .. 192
 7.2. Modélisation et contrôle des processus d’alimentation-évacuation de liquide .. 194
 7.2.1. Evacuation à débit constant .. 195
 7.2.2. Evacuation à débit variable .. 197
 7.2.3. Conception des systèmes de contrôle du niveau de liquide .. 199
 7.3. Modélisation et contrôle des processus d’alimentation-évacuation d’une capacité pneumatique .. 201
 7.3.1. Modélisation d’une capacité pneumatique .. 201
 7.3.2. Conception des systèmes de contrôle de la capacité pneumatique .. 204
 7.4. Modélisation et contrôle des processus de transfert de chaleur .. 205
 7.4.1. Modélisation d’un processus de transfert thermique .. 205
 7.4.2. Conception des systèmes de contrôle pour la température .. 208
 7.5. Modélisation et contrôle des processus de transfert de composants .. 209
 7.5.1. Modélisation d’un processus de mélange sans réaction chimique .. 209
 7.5.2. Modélisation d’un mélange avec réaction chimique .. 212
 7.5.3. Conception des systèmes de contrôle de la concentration des composants chimiques .. 214
Chapitre 8. Applications industrielles – Études de cas 217

8.1. Contrôle numérique pour l’installation de chauffage de l’air dans une aciérie ... 217
 8.1.1. Solution d’automatisation et conception de la commande . 218
 8.1.2. Optimisation du processus de combustion 221
8.2. Contrôle et optimisation d’une installation d’éthylène 224
 8.2.1. Solution d’automatisation et conception de la commande . 225
 8.2.1.1. Contrôle de la proportion des débits d’essence et de vapeur .. 226
 8.2.1.2. Contrôle des paramètres de la réaction chimique 227
 8.2.2. Optimisation du processus de pyrolyse 232
8.3. Commande numérique d’une installation thermo-énergétique .. 233
 8.3.1. Solution d’automatisation d’un point de fonctionnement thermique .. 234
 8.3.2. Optimisation du transfert thermique agent-produit 239
8.4. Contrôle extrémal d’une installation photovoltaïque 240
 8.4.1. Contrôle extrémal du panneau photovoltaïque 251

Annexe A .. 257

Annexe B .. 261

Annexe C .. 269

Annexe D .. 273

Liste des notations et acronymes .. 281

Bibliographie ... 285

Index ... 293