Table des matières

Préface	11
Remerciements	13
Chapitre 1. La co-construction du passé pour une histoire	
de la chimie des substances naturelles	15
1.1. Une convergence	15 18
1.3. Des sources partielles de l'histoire de la chimie des substances naturelles ?1.4. Une méthode originale pour raconter l'histoire de la chimie :	23
le compagnonnage	27
Chapitre 2. L'Institut de chimie des substances naturelles du CNRS (1955-2000), un emblème pour une recherche en évolution ?	35
2.1. La recherche en France et le CNRS, une ambivalence	
des sentiments ?	35
en 1959	35

2.1.2. Du pragmatisme à la nouvelle réforme de 1979	39
2.1.3. Des Assises de la recherche 1981-1982 aux années 2000	41
2.2. La chimie au CNRS	42
2.3. L'ICSN, un lieu de découvertes (de 1955 aux années 2000)	48
2.4. « La science est un acte social et politique »,	
Pierre Potier (1934-2006)	65
2.4.1. L'apprentissage de la recherche	66
2.4.2. La recherche est un moyen	69
2.4.3. L'intuition et l'audace pour servir une cause : les découvertes	
de la Navelbine [®] et du Taxotère [®]	71
2.4.3.1. La Navelbine [®]	71
2.4.3.2. Le Taxotère [®]	78
Chapitre 3. Des alcaloïdes de <i>Catharanthus roseus</i> à la découverte de la vinorelbine (Navelbine®)	83
3.1. <i>Catharanthus roseus</i> : botanique, herbiers, médecine empirique	84
3.1.1. La création du genre <i>Catharanthus</i>	85
3.1.2. Les premiers échantillons et herbiers de <i>C. roseus</i>	86
3.1.3. De l'utilisation de <i>C. roseus</i> en médecine populaire	
pour ses propriétés antidiabétiques à la découverte	
de propriétés cytotoxiques	87
3.1.3.1. <i>C. roseus</i> , plante antidiabétique ?	87
3.1.3.2. Des propriétés antidiabétiques	0,
aux activités antitumorales	90
3.2. Les alcaloïdes bis-indoliques de <i>Catharanthus roseus</i>	,
(années 1950-1960)	92
3.2.1. Des premières études chimiques à la caractérisation structurale	
de la vinblastine et de la vincristine	92
3.2.2. Vinblastine et vincristine : premiers médicaments anticancéreux) _
d'origine végétale	95
3.3. Etudes réalisées à l'ICSN : réaction de Polonovski modifiée	,,
et études chimiques de <i>Catharanthus</i> (années 1960-1970)	96
3.3.1. La réaction de Polonovski modifiée ou réaction	, 0
de Polonovski-Potier	96
3.3.2. Premières études chimiques des <i>Catharanthus</i> à l'ICSN	102
	- 02

3.4. Etudes réalisées à l'ICSN : hémisynthèse d'alcaloïdes
de type vinblastine, activité biologique et biosynthèse
(années 1970-1980)
3.4.1. Etat de l'art : premiers essais d'hémisynthèse conduisant
à des analogues de la vinblastine de configuration 18'R
(non naturelle)
3.4.2. Première obtention de l'anhydrovinblastine, analogue
de la vinblastine possédant la configuration 18'S (naturelle)
3.4.3. Mécanisme de formation de l'anhydrovinblastine
3.4.4. Détermination de la configuration 18'S <i>versus</i> 18'R :
dichroïsme circulaire électronique
3.4.5. Activité antitumorale et évaluation sur la tubuline
3.4.6. Biosynthèse des alcaloïdes bis-indoliques : l'anhydrovinblastine
est un produit naturel
3.5. De l'anhydrovinblastine à la leurosine, leurosidine, vinblastine
et découverte de la vinorelbine
3.5.1. Transformation de l'anhydrovinblastine en leurosine,
leurosidine et vinblastine
3.5.2. Découverte de la 7'-nor-anhydrovinblastine ou navelbine
et premiers résultats pharmacologiques et cliniques
3.5.3. Recherche d'un nouveau procédé de synthèse
de la 7'-nor-anhydrovinblastine
napitre 4. De l'if du Pacifique (<i>Taxus brevifolia</i>) à l'if commun
axus baccata) : la découverte du docetaxel (Taxotère [®])
4.1. L'if commun, <i>Taxus baccata</i>
4.1.1. Les ifs, botanique et toxicité
4.1.2. Premières études phytochimiques de l'if commun (T. baccata)
et autres espèces de <i>Taxus</i>
4.2. De l'if du Pacifique, <i>Taxus brevifolia</i> , au Taxol [®] ,
molécule anticancéreuse au nouveau mécanisme d'action
4.2.1. Découverte du taxol, diterpène cytotoxique isolé
de l'if du Pacifique
4.2.2. Le taxol, nouveau mécanisme d'action et difficultés rencontrées
lors de son développement

4.3. Etudes phytochimiques réalisées à l'ICSN : découverte	
de la désacétyl-10 baccatine III à l'état naturel (années 1980)	151
4.3.1. Extraction et purification de <i>T. baccata</i> en suivant l'activité	
sur tubuline	152
	154
4.3.3. Isolement d'autres taxanes et activité biologique sur tubuline	157
4.3.4. Etude des propriétés pharmacologiques du taxol à l'ICSN	
et à la Faculté de pharmacie de Grenoble	160
4.4. Vers la première hémisynthèse du désacétyl-10 taxol,	
du taxol et découverte d'un analogue très actif	
via la réaction d'hydroxyamination	161
4.4.1. Etudes chimiques de la désacétyl-10 baccatine III	161
4.4.1.1. Premières expériences concernant la réactivité chimique	
des groupements hydroxyles : l'acétylation	162
4.4.1.2. Recherche d'un groupement protecteur des hydroxyles	
en C-7 et C-10 et sa déprotection	163
4.4.2. Etudes sur l'estérification du ditroc-7,10 désacétyl-10	
baccatine III. Hémisynthèse de l'ester cinnamique	
3	165
4.4.3. Fonctionnalisation de la double liaison 2',3'	
de l'ester cinnamique de la désacétyl-10 baccatine III :	
1 () / 1	169
J J	170
4.4.3.2. Hydroxyamination de l'ester cinnamique	
et découverte d'un composé plus actif que le taxol	
	171
y y	177
	178
, i	180
, <u> </u>	181
4.5.2. Autres hémisynthèses convergentes et version hémisyntétique	
du taxol approuvée par la FDA	182
11	183
4.6.1. Extraction et purification de la désacétyl-10 baccatine III	
	184
4.6.2. Vers la synthèse convergente du 56 976 R.P	185

4.6.3. Des propriétés pharmacologiques et cliniques à l'autorisation de mise sur le marché du Taxotère [®] (56 976 R.P.)	189
Conclusion. De la science à l'industrie, aller au plus près d'une histoire totale ?	193
Bibliographie	197
Index	219