Table des matières

Introduction	9
Chapitre 1. Les bioréacteurs	13
1.1. Introduction	13
1.1.1. Qu'est-ce qu'un bioréacteur?	13
1.1.2. Classification des réacteurs biologiques	14
1.1.3. Petit précis de microbiologie	15
1.2. Modélisation des réactions biologiques	16
1.2.1. A propos des variables d'état du modèle	16
1.2.2. Processus biologiques et schéma réactionnel	21
1.2.3. Les équations du chémostat	23
1.2.4. Les cinétiques biologiques	27
1.2.5. Les intérêts du chémostat	29
1.3. Vers « un peu plus » de réalisme	30
1.3.1. Extensions	30
1.3.2. Le pH et les équilibres physico-chimiques	33
1.3.3. La spatialisation	35
1.3.4. Evolutions récentes	36
Chapitre 2. La croissance d'une seule espèce	39
2.1. Propriétés mathématiques du « modèle minimal »	40
2.1.1. Propriétés générales	40
2.1.2. La fonction μ est monotone et bornée	43
2.1.2.1. Les équilibres	44
2.1.2.2. Stabilité locale des équilibres	46
2 1 2 3 Stabilité globale	47

2.1.3. La fonction μ n'est pas monotone	50
2.1.3.1. Les équilibres	51
2.1.3.2. Stabilité locale des équilibres	52
2.1.4. Interprétations	54
2.1.4.1. Lessivage	54
2.1.4.2. Fortes densités	54
2.1.4.3. Le diagramme opératoire	54
2.2. Simulations	54
2.2.1. Simulations dans l'espace des phases	55
2.2.1.1. La fonction μ est une fonction de Monod	55
2.2.1.2. La fonction μ est une fonction de Haldane	57
2.2.2. Transitoires	58
2.3. Quelques extensions du modèle minimal	60
2.3.1. Présence de biomasse en entrée	61
2.3.1.1. Evolution de la concentration totale	61
2.3.1.2. Equilibre	62
2.3.2. Dilutions différentes	62
2.3.3. Taux de croissance densité-dépendant et caractéristique	
à l'équilibre	66
2.3.3.1. La caractéristique à l'équilibre	68
2.3.3.2. Equilibres	71
2.3.4. Rendement dépendant de la densité du substrat	72
2.4. Notes bibliographiques	76
Chapitre 3. L'exclusion compétitive	77
3.1. Le cas de fonctions de croissance monotones	77
3.1.1. Les équilibres	78
3.1.1.1. Le caractère non générique des équilibres de coexistence	79
3.1.2. Stabilité locale de l'équilibre de lessivage	80
3.1.3. Stabilité locale des équilibres hors lessivage	80
3.2. L'exclusion compétitive à l'équilibre	81
3.2.1. Enoncé	82
3.2.2. Espèce à l'équilibre en fonction du taux de dilution	82
3.2.3. Dynamique des proportions entre espèces	83
3.2.3.1. Le cas des espèces « proches »	85
3.2.3.2. Comportement au voisinage de l'équilibre	85
3.2.4. Conclusion	86
3.3. Stabilité globale	87
3.3.1. Une preuve « graphique » pour deux espèces	89
3.3.2. Une preuve pour le cas général	90
3.4. Le cas de fonctions de croissance non monotones	95
3.4.1. Ensemble de croissance	95
3.4.2. Etude des équilibres	96

3.4.3. L'exclusion compétitive	97
3.4.4. Compétition entre deux espèces	98
3.4.5. Illustration et effet d'une « bio-augmentation »	98
3.5. Notes bibliographiques	102
Chapitre 4. La compétition : le modèle densité-dépendant	107
4.1. Orientation du chapitre	107
4.2. La compétition de deux espèces	110
4.2.1. Comportement d'une espèce isolée	111
4.2.2. Equilibres des deux espèces en interaction	112
4.2.2.1. L'équilibre de lessivage (toujours)	113
4.2.2.2. Les équilibres d'exclusion (sous condition)	113
4.2.2.3. Les équilibres de coexistence	114
4.2.3. Stabilité des équilibres	115
4.2.4. Simulations	117
4.3. Compétition de N espèces : la compétition intraspécifique exclusive	120
4.3.1. Caractéristique à l'équilibre et coexistence	121
4.3.2. Simulations	124
4.4. Compétition de N espèces : le cas général	126
4.4.1. Un modèle densité-dépendant particulier	126
4.4.2. La compétition intraspécifique exclusive	127
4.4.3. La compétition intraspécifique dominante	127
4.4.4. La compétition indifférenciée	128
4.4.5. La compétition interspécifique dominante	131
4.5. Notes bibliographiques	137
Chapitre 5. Des modèles plus complexes	139
5.1. Introduction	139
5.2. Modèles avec biomasse agrégée	140
5.2.1. Biomasse planctonique <i>versus</i> biomasse agrégée	141
5.2.2. Coexistence entre les deux formes	143
5.2.3. Equilibres de coexistence	143
5.2.4. Etude de stabilité	147
5.2.5. Le cas des attachements/détachements rapides	149
5.2.6. Considération de plusieurs espèces	152
5.3. La relation « proie-prédateur » dans le chémostat	153
5.3.1. Introduction	153
5.3.2. La «chaîne » substrat-bactérie-prédateur	154
5.3.2.1. Le cas : $\mu(S_{in}) < D \dots \dots \dots \dots \dots \dots$	155
5.3.2.2. Le cas : $(\mu^{-1} + \nu^{-1})^{-1}(S_{in}) < D < \mu(S_{in}) \ldots \ldots$	156

8 Le chémostat

5.3.3. Le réseau trophique substrat-bactéries-prédateurs 5.3.4. Confrontation à des données expérimentales 5.4. Notes bibliographiques	160
Annexe A. Equations différentielles	165
Annexe B. Indications sur les exercices	209
Bibliographie	231
Index	239