Table des matières

Chapitre 1. Sources de dissipation dans les circuits électroniques
1.1. Brève description des types de logique151.1.1. Logique booléenne151.1.2. Logique combinatoire et logique séquentielle201.1.3. Transistors NMOS et PMOS291.1.4. Logique complémentaire CMOS34
1.1.1. Logique booléenne151.1.2. Logique combinatoire et logique séquentielle201.1.3. Transistors NMOS et PMOS291.1.4. Logique complémentaire CMOS34
1.1.2. Logique combinatoire et logique séquentielle201.1.3. Transistors NMOS et PMOS291.1.4. Logique complémentaire CMOS34
1.1.3. Transistors NMOS et PMOS291.1.4. Logique complémentaire CMOS34
1.1.4. Logique complémentaire CMOS
1 1 4 1 Temps de propagation et minimisation de ce temps 34
1.1.4.2. Facteur d'activité et réduction de ce facteur
1.1.5. Logique <i>pass-transistor</i>
1.1.6. Logique dynamique
1.2. Origine de la dissipation de chaleur dans les circuits
1.2.1. Effet Joule dans les circuits
1.2.2. Calcul de la puissance dynamique
1.2.3. Origine et calcul de la puissance statique
Chapitre 2. Thermodynamique et théorie de l'information 51
2.1. Rappel des grandeurs fondamentales : entropie et information 51
2.1.1. Définition statistique de l'entropie
2.1.2. Energie et entropie macroscopiques
2.1.3. Echange avec un thermostat, loi de Boltzmann et équipartition
de l'énergie
2.1.3.1. Loi de Boltzmann
2.1.3.2. Fonction de partition

2.1.3.3. Théorème d'équirépartition de l'énergie	60
2.1.4. Résumé et exemple de la production d'énergie	
dans un conducteur parcouru par un courant	62
2.1.5. Information et entropie associée	63
2.2. Exposé du principe de Landauer	68
2.2.1. Exposé du principe de Landauer	
et de quelques autres exemples	68
2.2.1.1. Limite de l'énergie utilisée	68
2.2.1.2. Principe de Landauer	69
2.2.1.3. Exemple de Feynman	70
2.2.1.4. Le paradoxe du démon de Maxwell	72
2.2.2. Les validations expérimentales du principe de Landauer	74
2.2.2.1. Vérification sur un dispositif physique	74
2.2.2.2. Vérification sur un dispositif électrique	75
2.3. Adiabaticité et réversibilité	76
2.3.1. Principe adiabatique de charge d'un condensateur	76
2.3.1.1. Charge d'une capacité constante	76
2.3.1.2. Charge d'une capacité constante	
au travers d'une résistance variable	79
2.3.1.3. Charge d'une capacité variable	
au travers d'une résistance variable	80
2.3.1.4. Charge d'une capacité constante en mode adiabatique	81
2.3.1.5. Optimisation de la charge d'un condensateur : cas général	83
2.3.1.6. Optimisation de la charge d'un condensateur	
avec prise en compte des courants de fuite	87
2.3.2. De l'adiabaticité à la réversibilité : une approche circuit	91
2.3.2.1. Solution quasi adiabatique	96
2.3.2.2. Solution adiabatique	97
Charitra 2 Madèles de transistera en technologia CMOS	00
Chapitre 3. Modèles de transistors en technologie CMOS	99
3.1. Rappel des propriétés des semi-conducteurs	99
3.1.1. Etats et densité de porteurs dans les semi-conducteurs	99
3.1.1.1. Electrons et trous	99
3.1.1.2. Densités d'états et fonctions de Bloch	100
3.1.1.3. Bandes d'énergie et énergie de Fermi	100
3.1.1.4. Densités de porteurs	104
3.1.2. Le courant dans un semi-conducteur	107
3.1.3. Potentiels de contact	109
3.1.4. Structure métal-oxyde-semi-conducteur	110
3.1.5. Faible et forte inversion	116

3.1.5.1. Forte inversion	116
3.1.5.2. Faible inversion.	117
3.2. Modèles statiques canal long et canal court	120
3.2.1. Principe de base et brève histoire de la technologie	120
semi-conducteur	120
3.2.2. Structure du transistor et pseudo-potentiels de Fermi	123
3.2.3. Calcul du courant en régime statique canal long	126
3.2.4. Calcul du courant en faible inversion	130
3.2.5. Calcul du courant en régime de canal court	133
3.2.5.1. Saturation de la vitesse	134
3.2.5.2. Diminution de la longueur du canal effectif	135
3.2.5.3. Diminution du seuil effectif	135
3.3. Modèles dynamiques du transistor	136
3.3.1. Régime quasi statique	136
3.3.2. Régime dynamique	140
3.3.3. Modèle « petits signaux » du transistor	140
Chapitre 4. Limites pratiques et théoriques de la technologie CMOS	147
4.1. Compromis vitesse-dissipation et limites de la technologie CMOS	147
4.1.1. Du transistor au circuit intégré	147
4.1.2. Compromis vitesse-consommation	150
4.1.3. Compromis consommation dynamique-consommation statique	153
4.2. Régime sous le seuil	157
4.2.1. Rappel des propriétés de faible inversion	157
4.2.2. Calcul et minimisation de l'énergie dissipée	158
4.2.3. Limites de la technologie CMOS sous le seuil	162
4.3. Limites pratiques et théoriques en technologie CMOS	164
4.3.1. Considérations économiques et évolution des méthodologies	164
4.3.1.1. Difficultés économiques : coût des équipements	
et des masques	164
4.3.1.2. Difficultés méthodologiques : complexité de la conception	
et du test	165
4.3.1.3. Difficultés de programmation liées au parallélisme	165
4.3.2. Difficultés technologiques : dissipation, variabilité,	
interconnexions	166
4.3.2.1. Dissipation de chaleur	166
4.3.2.2. Contrôle de la variabilité	167
4.3.2.3. Evolution des interconnexions	172
4.3.3. Limites théoriques et questions ouvertes	173

4.3.3.1. Limites venant de l'application du théorème	
de Shannon combiné aux relations d'incertitude de Heisenberg	173
4.3.3.2. Prise en compte de l'effet tunnel source-drain	175
4.3.3.3. Nécessité ou non de la logique réversible	176
Chapitre 5. La très basse consommation au niveau système	177
5.1. Evolution des technologies de gestion de la puissance	177
5.1.1. Techniques de base pour réduire la puissance dynamique	177
5.1.1.1. Techniques de parallélisation	177
5.1.1.2. Techniques de <i>voltage scaling</i>	179
5.1.1.3. Réduction de l'excursion de tension	179
5.1.1.4. Techniques indépendantes de la technologie	179
5.1.1.5. Techniques dépendantes de la technologie	180
5.1.2. Techniques de base pour réduire la puissance statique	180
5.1.2.1. Techniques multi-seuils	181
5.1.2.2. Techniques multi-tensions	181
5.1.2.3. Techniques pour réduire les courants sous le seuil	181
5.1.2.4. Logique MTCMOS	183
5.1.2.5. Logique VTCMOS (<i>Variable Threshold CMOS</i>)	184
5.1.2.6. Techniques dynamiques de réduction du courant	
sous le seuil (DVS et DVTS)	184
5.1.3. Conception en technologie 90 nm-65 nm-45 nm	185
5.1.3.1. Technologie 90 nm	185
5.1.3.2. Technologie 65 nm	185
5.1.3.3. Technologie 45 nm	186
5.2. Les circuits intégrés sous le seuil	186
5.2.1. Spécificités des circuits sous le seuil	186
5.2.2. Pipeline et parallélisation	187
5.2.3. Nouvelles architectures de SRAM	187
5.3. Les circuits près du seuil	188
5.3.1. Méthode d'optimisation	188
5.4. Interconnexions et réseau sur puce	193
5.4.1. Dissipation dans les interconnexions	193
5.4.2. Techniques pour réduire la dissipation	175
dans les interconnexions	198
5.4.2.1. Réduction de l'excursion de tension.	198
5.4.2.2. Réduction du taux d'activité	199
5.4.2.3. Réduction des capacités d'interconnexion	199
5.4.2.4. Réseaux sur puce et liens optiques	199
J.4.2.4. Reseaux sur puce et nens optiques	エフフ

Chapitre 6. Le calcul réversible et le calcul quantique	201
6.1. Les bases du calcul réversible	201
6.1.1. Introduction	201
6.1.2. Structure de groupe des portes réversibles	202
6.1.3. Conservatisme, linéarité et affinité	204
6.1.3.1. Portes conservatives	204
6.1.3.2. Portes linéaires	204
6.1.3.3. Portes linéaires affines	205
6.1.4. Les portes d'échange	205
6.1.5. Les portes de contrôle	207
6.1.5.1. L'inverseur contrôlé	209
6.1.5.2. La porte de Toffoli	210
6.1.5.3. La porte de Feyman	210
6.1.5.4. La porte de Fredkin	211
6.1.6. Deux théorèmes de base : no fan-out et no cloning	211
6.2. Quelques éléments pour la synthèse d'une fonction	212
6.2.1. Le problème de la synthèse et ses contraintes	212
6.2.2. Synthèse d'une fonction réversible	212
6.2.3. Synthèse d'une fonction non réversible	215
6.2.4. Exemple de l'additionneur.	217
6.2.5. Implémentations matérielles des portes réversibles	219
6.2.5.1. Inverseur contrôlé à un seul bit de contrôle	220
6.2.5.2. Inverseur contrôlé à deux bits de contrôle	220
6.3. Calcul réversible et calcul quantique	222
6.3.1. Principes du calcul quantique	223
6.3.2. Intrication	224
6.3.3. Quelques exemples de portes quantiques	226
6.3.4. Exemple de l'algorithme de Grover et perspectives	
du calcul quantique	227
Chapitre 7. Les circuits CMOS quasi adiabatiques	233
7.1. Les portes logiques adiabatiques en CMOS	233
7.1.1. Mise en œuvre du principe de charge optimale	
et pipeline adiabatique	233
7.1.2. Logique ECRL et PFAL en CMOS	240
7.1.2.1. ECRL phase 1 : phase d'établissement des entrées	241
7.1.2.2. ECRL phase 2 : phase d'évaluation	242
7.1.2.3. ECRL phase 3 : phase de maintien	242
7.1.2.4. ECRL phase 4 : phase de remise à zéro	242

7.1.2.5. PFAL phase 1 : phase d'établissement des entrées	244
7.1.2.6. PFAL phase 2 : phase d'évaluation	244
7.1.2.7. PFAL phase 3 : phase de maintien	244
7.1.2.8. PFAL phase 4 : phase de remise à zéro	245
7.1.3. Autres technologies de portes et comparaison	245
7.2. Calcul de la dissipation dans un circuit adiabatique	247
7.2.1. Calcul en régime normal	247
7.2.1.1. Phase 1 : phase d'établissement des entrées	247
7.2.1.2. Phase 2 : phase d'évaluation	247
7.2.1.3. Phase 3 : phase de maintien	249
7.2.1.4. Phase 4 : phase de remise à zéro	250
7.2.1.5. Phase 1 : évènement suivant	251
7.2.2. Calcul en régime sous le seuil	254
7.2.2.1. Phase 1 : établissement des entrées	254
7.2.2.2. Phase 2 : évaluation	254
7.2.2.3. Phase 3 : phase de maintien	257
7.2.2.4. Phase 4 : phase de remise à zéro	257
7.3. Les alimentations à récupération d'énergie	259
7.3.1. Alimentation à base de capacités	259
7.3.2. Alimentation à base d'inductance	268
7.4. Les architectures arithmétiques adiabatiques	275
7.4.1. Principes de base	275
7.4.2. Exemple de l'additionneur.	276
7.4.3. Intérêt des portes complexes	277
Chapitre 8. La technologie à base de micro-relais	281
8.1. La physique des micro-relais	282
8.1.1. Les différentes technologies de calcul	282
8.1.2. Les différentes technologies d'actuation	283
8.1.2.1. Relais magnétique	283
8.1.2.2. Relais thermique	283
8.1.2.3. Relais piézo-électrique	284
8.1.2.4. Relais électrostatique	284
8.1.3. La modélisation dynamique des micro-relais	286
8.1.4. Exemples de réalisation et difficultés technologiques	292
8.1.4.1. Les micro-relais à membrane de Berkeley	292
8.1.4.2. Les micro-relais de type cantilever de Stanford	292
8.1.4.3. Le nano-relais du KAIST	293
8.1.4.4. Les travaux de Case-Western University	293
8.1.4.5. Les travaux du projet européen NEMIAC	294

8.2. Calcul de la dissipation dans un circuit à base de micro-relais	294
8.2.1. Optimisation du micro-relais à actuation électrostatique	294
8.2.2. Les solutions en régime adiabatique	301
8.2.3. Comparaison entre CMOS et micro-relais	307
8.2.3.1. Synthèse des résultats obtenus en CMOS classique	307
8.2.3.2. Synthèse des résultats obtenus en CMOS sous le seuil	307
8.2.3.3. Synthèse des résultats obtenus pour la CMOS adiabatique	
en régime normal	308
8.2.3.4. Synthèse des résultats obtenus pour la CMOS adiabatique	
en régime sous le seuil	308
8.2.3.5. Synthèse des résultats obtenus pour la technologie	
micro-relais adiabatique	309
Bibliographie	311
Index	313