Table des matières

Introduction	9
Chapitre 1. Construire des objets dans le temps	15
1.1. Différents points de vue sur l'ontologie	18 18
ontologique : objets bona fide <i>versus</i> fiat	22
objets <i>versus</i> champs	24
le cas des villes	28
1.2. Situer les objets spatiaux dans le temps	31
et « perdurantes » des philosophes	31
1.2.2. Du changement à la vie des objets	35
1.3. Conclusion	43
Chapitre 2. Du questionnement empirique à la modélisation	15
spatio-temporelle	45
2.1. De la conception des entités à leur analyse pour répondre	
à des questions thématiques	46
à partir des observations empiriques	48

2.1.2. Représenter et explorer le changement et le mouvement	51
2.1.3. Analyser l'évolution des relations statistiques et spatiales	54
2.1.4. Identifier les processus sous-jacents au changement :	
simuler et tester des scénarios	57
2.1.4.1. Modèle dynamique agrégé	58
2.1.4.2. Modèle dynamique d'un système spatial	59
2.1.4.3. Microsimulation: modèles dits individus-centrés	59
2.1.4.4. Automates cellulaires (AC) et systèmes multi-agents	
(SMA)	59
2.2. Enjeux et modèles : les malentendus possibles	61
2.3. Exemples d'application	63
2.3.1. Dynamique des villes : construction et suivi dans le temps	
d'objets composites (exemple 1)	64
2.3.1.1. Etape 1 : construire un ensemble d'objets cohérent	
dans l'espace et dans le temps : une base de données harmonisées	
des villes européennes	64
2.3.1.2. Etape 2 : explorer l'évolution des villes	68
2.3.1.3. Etape 3 : analyser les différences d'évolutions des villes :	
typologie des trajectoires	69
2.3.1.4. Etape 4 : simuler la dynamique d'un système de villes	70
2.3.2. Distribution des fonctions urbaines dans l'espace intraurbain :	
construction d'objets fonctionnels spatio-temporels (exemple 2)	70
2.3.2.1. Etape 1 : construire un ensemble cohérent d'objets	
fonctionnels dans l'espace et dans le temps	71
2.3.2.2. Etape 2 : explorer les temporalités des objets thématiques	71
2.3.3. Evaluer l'impact d'objets mobiles sur l'espace support :	
pratiques animales et évolution des ressources (exemple 3)	73
2.3.3.1. Etape 1 : construction des entités (objets et propriétés)	
à partir des données empiriques : identifier les lieux	
de fréquentation animale à partir de relevés GPS, caractériser	
le changement du couvert végétal à partir d'images satellites	74
2.3.3.2. Etape 2 : représenter et explorer les mouvements	
des troupeaux et les changements d'occupation du sol	76
2.3.3.3. Etape 3 : analyser les relations entre l'intensité	
de la fréquentation animale et le changement du couvert végétal	77
2.3.3.4. Etape 4 : identifier les processus liant les pratiques animales	
et le changement du couvert végétal	77
2.3.4. Quels facteurs derrière l'émergence et/ou le renforcement	
de la ségrégation scolaire ? Construction d'informations multiniveaux	
et multidates (exemple 4)	77

2.3.4.1. Etape 1 : construction des objets et de leurs propriétés	
dans une perspective multiniveau	78
2.3.4.2. Etape 2 : représenter et explorer les choix d'établissement	
des élèves et leurs conséquences sur la composition sociale	5 0
des établissements et leur évolution	78
2.3.4.3. Etape 3 : analyser les relations entre la réussite scolaire	0.0
et les caractéristiques des élèves et de l'établissement fréquenté	80
2.3.4.4. Etape 4 : identifier les processus menant	0.0
à une ségrégation scolaire plus ou moins importante	80
2.4. Conclusion	81
Chapitre 3. Analyser des données spatio-temporelles :	
approches empiriques et statistiques	83
3.1. Données statistiques et analyse spatio-temporelle	84
3.1.1. Evolution de l'analyse spatiale dans un contexte marqué	0.
par les statistiques et l'informatique	84
3.1.2. Différentes façons de prendre en compte le temps et l'espace	0.
pour analyser les processus spatio-temporels	88
3.1.2.1. Du tableau statistique à la matrice d'information	
géographique : espace support et espace actif	88
3.1.2.2. Le temps « déplié » et le temps « replié »	90
3.1.3. De la dynamique des entités à celle des organisations :	-
qu'est-ce qui change et par rapport à quel référentiel ?	91
3.2. Suivre l'évolution de la structure de systèmes spatiaux	94
3.2.1. Décrire l'évolution d'organisations spatiales et hiérarchiques	94
3.2.1.1. Les indicateurs d'organisation spatiale	94
3.2.1.2. La relation rang-taille comme indicateur	
de l'organisation hiérarchique d'un système de villes	98
3.2.2. Changement, temporalités et explications statistiques	101
3.3. Appréhender l'évolution des entités d'un système spatial	104
3.3.1. Construire, décrire et catégoriser des trajectoires d'évolution	105
3.3.1.1. Evolution du système de villes européennes	
entre 1600 et 1990	105
3.3.1.2. Evolution des spécialisations économiques	
des villes américaines entre 1970 et 2000	108
3.3.2. Identifier des types de changement <i>a priori</i> pour classer	
des évolutions	110
3.3.3. Temps « déplié » et prévisions	111
3.4 Conclusion	114

Chapitre 4. Explorer les processus sous-jacents au changement : modèles de simulation	119
4.1. La simulation informatique <i>versus</i> l'approche statistique :	11)
différents points de vue sur l'explication	119
4.1.1. De la covariation à l'interaction, de la différenciation	
à l'émergence	122
4.1.2. Différents types d'explication : du pourcentage de variance	
expliquée à la génération des mécanismes	124
4.1.3. Différents points de vue sur les phénomènes multiniveaux	126
4.2. Modèles de microsimulation	128
4.3. Modèles informatiques : simulation et émergence	133
4.3.1. Modéliser la diffusion d'un front migratoire	
en intégrant l'aléa	133
4.3.2. Les approches par les automates cellulaires :	
le cas des changements d'utilisation du sol	136
4.3.3. Modélisation agent sur des entités simples	141
4.3.3.1. Dynamique de ségrégation de la population dans la ville	
de Yaffo entre 1955 et 1995	142
4.3.3.2. La « spirale des inégalités » scolaires	142
4.3.3.3. Simuler l'abandon d'un territoire :	
exemples en archéologie	143
4.3.4. Modélisation agent sur des entités composites	145
4.3.4.1. Le modèle MayaSim : simuler la dynamique	
du peuplement Maya	146
4.3.4.2. Le modèle EuroSim : simulation de la dynamique	
du système des villes européennes entre 1950 et 2050	147
4.4. Conclusion	150
Conclusion	153
Conclusion	133
Bibliographie	159
Index	175